Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Jul;143(1):427–431. doi: 10.1128/jb.143.1.427-431.1980

Inhibition of leucine transport in Saccharomyces by S-adenosylmethionine.

R E Law, A J Ferro
PMCID: PMC294262  PMID: 6995442

Abstract

S-Adenoxyl-L-methionine (SAM) inhibited leucine transport in Saccharomyces cerevisiae. By using a mutant defective in the active transport of SAM, we demonstrated that the inhibitory effect was exerted at an extracellular site. Cells preincubated wtih SAM for 120 min became refractory to its inhibitory effect, which was not a result of either the active transport or the metabolism of SAM. The quantitative recovery of labeled SAM from the incubation medium indicated that SAM, and not a metabolite, was the true inhibitory molecule. S-Adenosyl-L-homocysteine and S-adenosyl-L-ethionine also functioned as inhibitors of leucine transport, whereas S-adenosyl-D-methionine, S-adenosyl-D-homocystein, 5'-methylthioadenosine, 5'-dimethylthioadenosine, and adenosine lacked this property. Kinetic studies demonstrated that SAM was a competitive inhibitor of leucine transport.

Full text

PDF
427

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cherest H., Eichler F., Robichon-Szulmajster H. Genetic and regulatory aspects of methionine biosynthesis in Saccharomyces cerevisiae. J Bacteriol. 1969 Jan;97(1):328–336. doi: 10.1128/jb.97.1.328-336.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Darte C., Grenson M. Evidence for three glutamic acid transporting systems with specialized physiological functions in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1975 Dec 1;67(3):1028–1033. doi: 10.1016/0006-291x(75)90777-9. [DOI] [PubMed] [Google Scholar]
  3. Grenson M., Hennaut C. Mutation affecting activity of several distinct amino acid transport systems in Saccharomyces cerevisiae. J Bacteriol. 1971 Feb;105(2):477–482. doi: 10.1128/jb.105.2.477-482.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Grenson M., Hou C., Crabeel M. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. J Bacteriol. 1970 Sep;103(3):770–777. doi: 10.1128/jb.103.3.770-777.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Holloway C. T., Greene R. C., Su C. H. Regulation of S-adenosylmethionine synthetase in Escherichia coli. J Bacteriol. 1970 Nov;104(2):734–747. doi: 10.1128/jb.104.2.734-747.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Mertz J. E., Spence K. D. Methionine adenosyltransferase and ethionine resistance in Saccharomyces cerevisiae. J Bacteriol. 1972 Sep;111(3):778–783. doi: 10.1128/jb.111.3.778-783.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Murphy J. T., Spence K. D. Transport of S-adenosylmethionine in Saccharomyces cerevisiae. J Bacteriol. 1972 Feb;109(2):499–504. doi: 10.1128/jb.109.2.499-504.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Nakamura K. D., Schlenk F. Active transport of exogenous S-adenosylmethionine and related compounds into cells and vacuoles of Saccharomyces cerevisiae. J Bacteriol. 1974 Oct;120(1):482–487. doi: 10.1128/jb.120.1.482-487.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. PARKS L. W., SCHLENK F. The stability and hydrolysis of S-adenosylmethionine; isolation of S-ribosylmethionine. J Biol Chem. 1958 Jan;230(1):295–305. [PubMed] [Google Scholar]
  10. Petrotta-Simpson T. F., Talmadge J. E., Spence K. D. Specificity and genetics of S-adenosylmethionine transport in Saccharomyces cerevisiae. J Bacteriol. 1975 Aug;123(2):516–522. doi: 10.1128/jb.123.2.516-522.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. SCHLENK F., DEPALMA R. E. The formation of S-adenosylmethionine in yeast. J Biol Chem. 1957 Dec;229(2):1037–1050. [PubMed] [Google Scholar]
  12. SVIHLA G., DAINKO J. L., SCHLENK F. ULTRAVIOLET MICROSCOPY OF THE VACUOLE OF SACCHAROMYCES CEREVISIAE DURING SPORULATION. J Bacteriol. 1964 Aug;88:449–456. doi: 10.1128/jb.88.2.449-456.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schlenk F., Zydek-Cwick C. R. Stabilit of the glycosidic bond of S-adenosylsulfonium compounds toward acid. Arch Biochem Biophys. 1969 Nov;134(2):414–422. doi: 10.1016/0003-9861(69)90301-4. [DOI] [PubMed] [Google Scholar]
  14. Schwencke J., De Robichon-Szulmajster H. The transport of S-adenosyl-L-methionine in isolated yeast vacuoles and spheroplasts. Eur J Biochem. 1976 May 17;65(1):49–60. doi: 10.1111/j.1432-1033.1976.tb10388.x. [DOI] [PubMed] [Google Scholar]
  15. Shapiro S. K., Ehninger D. J. Methods for the analysis and preparation of adenosylmethionine and adenosylhomocysteine. Anal Biochem. 1966 May;15(2):323–333. doi: 10.1016/0003-2697(66)90038-8. [DOI] [PubMed] [Google Scholar]
  16. Spence K. D. Mutation of Saccharomyces cerevisiae preventing uptake of S-adenosylmethionine. J Bacteriol. 1971 May;106(2):325–330. doi: 10.1128/jb.106.2.325-330.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wickerham L. J. A Critical Evaluation of the Nitrogen Assimilation Tests Commonly Used in the Classification of Yeasts. J Bacteriol. 1946 Sep;52(3):293–301. [PMC free article] [PubMed] [Google Scholar]
  18. Zappia V., Galletti P., Porcelli M., Ruggiero G., Andreana A. Uptake of adenosylmethionine and related sulfur compounds by isolated rat liver. FEBS Lett. 1978 Jun 15;90(2):331–335. doi: 10.1016/0014-5793(78)80398-6. [DOI] [PubMed] [Google Scholar]
  19. Zappia V., Zydek-Cwick C. R., Schlenk F. The specificity of S-adenosyl-L-metionine sulfonium stereoisomers in some enzyme systems. Biochim Biophys Acta. 1969 Mar 18;178(1):185–187. doi: 10.1016/0005-2744(69)90147-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES