Abstract
The observation that polA1 and recL152 mutations result in both slow pyrimidine dimer excision and large repair patch size leads to the hypothesis that patch size is directly related to the rate of excision. In this study caffeine, a known inhibitor of excision repair, was used to examine the extent of correlation between excision rate and patch size by measuring patch size in the presence of several concentrations of caffeine. Both the rate of excision and the resistance to ultraviolet radiation were reduced with increasing concentrations of caffeine after irradiation. Caffeine also inhibited the rate at which incisions were made and prolonged the time required to rejoin the discontinuities. Patch size, however, was unaffected by caffeine treatment.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Boyle J. M., Paterson M. C., Setlow R. B. Excision-repair properties of an Escherichia coli mutant deficient in DNA polymerase. Nature. 1970 May 23;226(5247):708–710. doi: 10.1038/226708a0. [DOI] [PubMed] [Google Scholar]
- Carrier W. L., Setlow R. B. Endonuclease from Micrococcus luteus which has activity toward ultraviolet-irradiated deoxyribonucleic acid: purification and properties. J Bacteriol. 1970 Apr;102(1):178–186. doi: 10.1128/jb.102.1.178-186.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chase J. W., Masker W. E. Deoxyribonucleic acid repair in Escherichia coli mutants deficient in the 5'----3' exonuclease activity of deoxyribonucleic acid polymerase I and exonuclease VII. J Bacteriol. 1977 May;130(2):667–675. doi: 10.1128/jb.130.2.667-675.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chase J. W., Masker W. E., Murphy J. B. Pyrimidine dimer excision in Escherichia coli strains deficient in exonucleases V and VII and in the 5' leads to 3' exonuclease of DNA polymerase I. J Bacteriol. 1979 Jan;137(1):234–242. doi: 10.1128/jb.137.1.234-242.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper P. K., Hanawalt P. C. Heterogeneity of patch size in repair replicated DNA in Escherichia coli. J Mol Biol. 1972 Jun 14;67(1):1–10. doi: 10.1016/0022-2836(72)90381-6. [DOI] [PubMed] [Google Scholar]
- Cooper P. K., Hanawalt P. C. Role of DNA polymerase I and the rec system in excision-repair in Escherichia coli. Proc Natl Acad Sci U S A. 1972 May;69(5):1156–1160. doi: 10.1073/pnas.69.5.1156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper P. Excision-repair in mutants of Escherichia coli deficient in DNA polymerase I and/or its associated 5' leads to 3' exonuclease. Mol Gen Genet. 1977 Jan 7;150(1):1–12. doi: 10.1007/BF02425319. [DOI] [PubMed] [Google Scholar]
- Domon M., Barton B., Porte A., Rauth A. M. The interaction of caffeine with ultra-violet-light-irradiated DNA. Int J Radiat Biol Relat Stud Phys Chem Med. 1970;17(4):395–399. doi: 10.1080/09553007014550481. [DOI] [PubMed] [Google Scholar]
- Dorson J. W., Moses R. E. DNA polymerase I-mediated ultraviolet repair synthesis in toluene-treated Escherichia coli. J Biol Chem. 1978 Feb 10;253(3):665–670. [PubMed] [Google Scholar]
- Fong K., Bockrath R. C. Inhibition of deoxyribonucleic acid repair in Escherichia coli by caffeine and acriflavine after ultraviolet irradiation. J Bacteriol. 1979 Aug;139(2):671–674. doi: 10.1128/jb.139.2.671-674.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grigg G. W. Caffeine-death in Escherichia coli. Mol Gen Genet. 1968;102(4):316–335. doi: 10.1007/BF00433723. [DOI] [PubMed] [Google Scholar]
- Kanner L., Hanawalt P. Repair deficiency in a bacterial mutant defective in DNA polymerase. Biochem Biophys Res Commun. 1970 Apr 8;39(1):149–155. doi: 10.1016/0006-291x(70)90770-9. [DOI] [PubMed] [Google Scholar]
- Paterson M. C., Boyle J. M., Setlow R. B. Ultraviolet- and X-ray-induced responses of a deoxyribonucleic acid polymerase-deficient mutant of Escherichia coli. J Bacteriol. 1971 Jul;107(1):61–67. doi: 10.1128/jb.107.1.61-67.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pauling C., Hamm L. Properties of a temperature-sensitive radiation-sensitive mutant of Escherichia coli. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1495–1502. doi: 10.1073/pnas.60.4.1495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Regan J. D., Setlow R. B., Ley R. D. Normal and defective repair of damaged DNA in human cells: a sensitive assay utilizing the photolysis of bromodeoxyuridine. Proc Natl Acad Sci U S A. 1971 Apr;68(4):708–712. doi: 10.1073/pnas.68.4.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Regan J. D., Setlow R. B. Two forms of repair in the DNA of human cells damaged by chemical carcinogens and mutagens. Cancer Res. 1974 Dec;34(12):3318–3325. [PubMed] [Google Scholar]
- Rothman R. H., Clark A. J. Defective excision and postreplication repair of UV-damaged DNA in a recL mutant strain of E. coli K-12. Mol Gen Genet. 1977 Oct 24;155(3):267–277. doi: 10.1007/BF00272805. [DOI] [PubMed] [Google Scholar]
- Rothman R. H. Dimer excision and repair replication patch size in recL152 mutant of Escherichia coli K-12. J Bacteriol. 1978 Oct;136(1):444–448. doi: 10.1128/jb.136.1.444-448.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimada K., Takagi Y. The effect of caffeine on the repair of ultraviolet-damaged DNA in bacteria. Biochim Biophys Acta. 1967;145(3):763–770. doi: 10.1016/0005-2787(67)90135-9. [DOI] [PubMed] [Google Scholar]
- Willetts N. S., Clark A. J., Low B. Genetic location of certain mutations conferring recombination deficiency in Escherichia coli. J Bacteriol. 1969 Jan;97(1):244–249. doi: 10.1128/jb.97.1.244-249.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]