Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1994 May;93(5):1940–1947. doi: 10.1172/JCI117185

Endogenous nitric oxide enhances prostaglandin production in a model of renal inflammation.

D Salvemini 1, K Seibert 1, J L Masferrer 1, T P Misko 1, M G Currie 1, P Needleman 1
PMCID: PMC294301  PMID: 7514189

Abstract

The interaction between nitric oxide (NO) and cyclooxygenase (COX) was studied in a rabbit model of renal inflammation, the ureteral obstructed hydronephrotic kidney (HNK). Ex vivo perfusion of the HNK but not the control kidney (e.g., unobstructed contralateral kidney, CLK), led to a time-dependent release of nitrite (NO2-), a breakdown product of NO. Stimulation of the HNK with bradykinin (BK) evoked a time-dependent increase in prostaglandin E2 (PGE2) production. NG-monomethyl-L-arginine (L-NMMA), which blocks the activity of both constitutive and inducible nitric oxide synthase (cNOS and iNOS), aminoguanidine, a recently described selective iNOS inhibitor, dexamethasone, or cycloheximide abolished the release of NO2- and attenuated the exaggerated BK-induced PGE2 production. This supports the existence of iNOS and COX-2 in the HNK. In the CLK, BK elicited release of both NO2- and PGE2 but this did not augment with time. L-NMMA but not aminoguanidine, dexamethasone, or cycloheximide attenuated NO2- and PGE2 release indicative of the presence of constitutive but not inducible NOS or COX. The current study suggests that the endogenous release of NO from cNOS in the CLK activates a constitutive COX resulting in optimal PGE2 release by BK. In addition, in the HNK, NO release from iNOS activates the induced COX resulting in markedly increased release of proinflammatory prostaglandin. The broader implication of this study is that the cyclooxygenase isozymes are potential receptor targets for nitric oxide.

Full text

PDF
1940

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angus J. A., Cocks T. M. Endothelium-derived relaxing factor. Pharmacol Ther. 1989;41(1-2):303–352. doi: 10.1016/0163-7258(89)90112-5. [DOI] [PubMed] [Google Scholar]
  2. Bhardwaj R., Moore P. K. The effect of arginine and nitric oxide on resistance blood vessels of the perfused rat kidney. Br J Pharmacol. 1989 Jul;97(3):739–744. doi: 10.1111/j.1476-5381.1989.tb12011.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cattell V., Cook T., Moncada S. Glomeruli synthesize nitrite in experimental nephrotoxic nephritis. Kidney Int. 1990 Dec;38(6):1056–1060. doi: 10.1038/ki.1990.312. [DOI] [PubMed] [Google Scholar]
  4. Cook H. T., Sullivan R. Glomerular nitrite synthesis in in situ immune complex glomerulonephritis in the rat. Am J Pathol. 1991 Nov;139(5):1047–1052. [PMC free article] [PubMed] [Google Scholar]
  5. Corbett J. A., Tilton R. G., Chang K., Hasan K. S., Ido Y., Wang J. L., Sweetland M. A., Lancaster J. R., Jr, Williamson J. R., McDaniel M. L. Aminoguanidine, a novel inhibitor of nitric oxide formation, prevents diabetic vascular dysfunction. Diabetes. 1992 Apr;41(4):552–556. doi: 10.2337/diab.41.4.552. [DOI] [PubMed] [Google Scholar]
  6. Crack P., Cocks T. Thimerosal blocks stimulated but not basal release of endothelium-derived relaxing factor (EDRF) in dog isolated coronary artery. Br J Pharmacol. 1992 Oct;107(2):566–572. doi: 10.1111/j.1476-5381.1992.tb12784.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Egan R. W., Paxton J., Kuehl F. A., Jr Mechanism for irreversible self-deactivation of prostaglandin synthetase. J Biol Chem. 1976 Dec 10;251(23):7329–7335. [PubMed] [Google Scholar]
  8. Fu J. Y., Masferrer J. L., Seibert K., Raz A., Needleman P. The induction and suppression of prostaglandin H2 synthase (cyclooxygenase) in human monocytes. J Biol Chem. 1990 Oct 5;265(28):16737–16740. [PubMed] [Google Scholar]
  9. Griffiths M. J., Messent M., MacAllister R. J., Evans T. W. Aminoguanidine selectively inhibits inducible nitric oxide synthase. Br J Pharmacol. 1993 Nov;110(3):963–968. doi: 10.1111/j.1476-5381.1993.tb13907.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ignarro L. J., Gruetter C. A. Requirement of thiols for activation of coronary arterial guanylate cyclase by glyceryl trinitrate and sodium nitrite: possible involvement of S-nitrosothiols. Biochim Biophys Acta. 1980 Aug 13;631(2):221–231. doi: 10.1016/0304-4165(80)90297-4. [DOI] [PubMed] [Google Scholar]
  11. Ignarro L. J., Lippton H., Edwards J. C., Baricos W. H., Hyman A. L., Kadowitz P. J., Gruetter C. A. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. J Pharmacol Exp Ther. 1981 Sep;218(3):739–749. [PubMed] [Google Scholar]
  12. Jansen A., Lewis S., Cattell V., Cook H. T. Arginase is a major pathway of L-arginine metabolism in nephritic glomeruli. Kidney Int. 1992 Nov;42(5):1107–1112. doi: 10.1038/ki.1992.394. [DOI] [PubMed] [Google Scholar]
  13. Kanner J., Harel S., Granit R. Nitric oxide as an antioxidant. Arch Biochem Biophys. 1991 Aug 15;289(1):130–136. doi: 10.1016/0003-9861(91)90452-o. [DOI] [PubMed] [Google Scholar]
  14. Karthein R., Nastainczyk W., Ruf H. H. EPR study of ferric native prostaglandin H synthase and its ferrous NO derivative. Eur J Biochem. 1987 Jul 1;166(1):173–180. doi: 10.1111/j.1432-1033.1987.tb13499.x. [DOI] [PubMed] [Google Scholar]
  15. Katsuki S., Arnold W., Mittal C., Murad F. Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. J Cyclic Nucleotide Res. 1977 Feb;3(1):23–35. [PubMed] [Google Scholar]
  16. Kawasaki A., Needleman P. Contribution of thromboxane to renal resistance changes in the isolated perfused hydronephrotic rabbit kidney. Circ Res. 1982 Apr;50(4):486–490. doi: 10.1161/01.res.50.4.486. [DOI] [PubMed] [Google Scholar]
  17. King A. J., Brenner B. M. Endothelium-derived vasoactive factors and the renal vasculature. Am J Physiol. 1991 Apr;260(4 Pt 2):R653–R662. doi: 10.1152/ajpregu.1991.260.4.R653. [DOI] [PubMed] [Google Scholar]
  18. Lefkowith J. B., Needleman P. Arachidonate metabolism in renal injury. Adv Prostaglandin Thromboxane Leukot Res. 1985;13:121–130. [PubMed] [Google Scholar]
  19. Lefkowith J. B., Okegawa T., DeSchryver-Kecskemeti K., Needleman P. Macrophage-dependent arachidonate metabolism in hydronephrosis. Kidney Int. 1984 Jul;26(1):10–17. doi: 10.1038/ki.1984.127. [DOI] [PubMed] [Google Scholar]
  20. Lüscher T. F., Bock H. A. The endothelial L-arginine/nitric oxide pathway and the renal circulation. Klin Wochenschr. 1991 Sep 3;69(13):603–609. doi: 10.1007/BF01649323. [DOI] [PubMed] [Google Scholar]
  21. Maier J. A., Hla T., Maciag T. Cyclooxygenase is an immediate-early gene induced by interleukin-1 in human endothelial cells. J Biol Chem. 1990 Jul 5;265(19):10805–10808. [PubMed] [Google Scholar]
  22. Marletta M. A., Yoon P. S., Iyengar R., Leaf C. D., Wishnok J. S. Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry. 1988 Nov 29;27(24):8706–8711. doi: 10.1021/bi00424a003. [DOI] [PubMed] [Google Scholar]
  23. Masferrer J. L., Seibert K., Zweifel B., Needleman P. Endogenous glucocorticoids regulate an inducible cyclooxygenase enzyme. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3917–3921. doi: 10.1073/pnas.89.9.3917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Masferrer J. L., Zweifel B. S., Seibert K., Needleman P. Selective regulation of cellular cyclooxygenase by dexamethasone and endotoxin in mice. J Clin Invest. 1990 Oct;86(4):1375–1379. doi: 10.1172/JCI114850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mathias C. J., Welch M. J., Schwartz D. B., Spaethe S. M., Needleman P. Differentiation in vivo of the sequential blood cell invasion following ureter obstruction of the rabbit kidney. Int J Rad Appl Instrum B. 1989;16(1):25–32. doi: 10.1016/0883-2897(89)90211-0. [DOI] [PubMed] [Google Scholar]
  26. Misko T. P., Moore W. M., Kasten T. P., Nickols G. A., Corbett J. A., Tilton R. G., McDaniel M. L., Williamson J. R., Currie M. G. Selective inhibition of the inducible nitric oxide synthase by aminoguanidine. Eur J Pharmacol. 1993 Mar 16;233(1):119–125. doi: 10.1016/0014-2999(93)90357-n. [DOI] [PubMed] [Google Scholar]
  27. Mollace V., Salvemini D., Anggard E., Vane J. Nitric oxide from vascular smooth muscle cells: regulation of platelet reactivity and smooth muscle cell guanylate cyclase. Br J Pharmacol. 1991 Nov;104(3):633–638. doi: 10.1111/j.1476-5381.1991.tb12481.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  29. Morrison A. R., Nishikawa K., Needleman P. Thromboxane A2 biosynthesis in the ureter obstructed isolated perfused kidney of the rabbit. J Pharmacol Exp Ther. 1978 Apr;205(1):1–8. [PubMed] [Google Scholar]
  30. Morrison A. R., Nishikawa K., Needleman P. Unmasking of thromboxane A2 synthesis by ureteral obstruction in the rabbit kidney. Nature. 1977 May 19;267(5608):259–260. doi: 10.1038/267259a0. [DOI] [PubMed] [Google Scholar]
  31. Nagle R. B., Bulger R. E., Cutler R. E., Jervis H. R., Benditt E. P. Unilateral obstructive nephropathy in the rabbit. I. Early morphologic, physiologic, and histochemical changes. Lab Invest. 1973 Apr;28(4):456–467. [PubMed] [Google Scholar]
  32. Nagle R. B., Johnson M. E., Jervis H. R. Proliferation of renal interstitial cells following injury induced by ureteral obstruction. Lab Invest. 1976 Jul;35(1):18–22. [PubMed] [Google Scholar]
  33. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed] [Google Scholar]
  34. Needleman P., Wyche A., Bronson S. D., Holmberg S., Morrison A. R. Specific regulation of peptide-induced renal prostaglandin synthesis. J Biol Chem. 1979 Oct 10;254(19):9772–9779. [PubMed] [Google Scholar]
  35. Nishikawa K., Morrison A., Needleman P. Exaggerated prostaglandin biosynthesis and its influence on renal resistance in the isolated hydronephrotic rabbit kidney. J Clin Invest. 1977 Jun;59(6):1143–1150. doi: 10.1172/JCI108738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Okegawa T., Jonas P. E., DeSchryver K., Kawasaki A., Needleman P. Metabolic and cellular alterations underlying the exaggerated renal prostaglandin and thromboxane synthesis in ureter obstruction in rabbits. Inflammatory response involving fibroblasts and mononuclear cells. J Clin Invest. 1983 Jan;71(1):81–90. doi: 10.1172/JCI110754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Radomski M. W., Palmer R. M., Moncada S. Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc Natl Acad Sci U S A. 1990 Dec;87(24):10043–10047. doi: 10.1073/pnas.87.24.10043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rapoport R. M., Draznin M. B., Murad F. Endothelium-dependent vasodilator-and nitrovasodilator-induced relaxation may be mediated through cyclic GMP formation and cyclic GMP-dependent protein phosphorylation. Trans Assoc Am Physicians. 1983;96:19–30. [PubMed] [Google Scholar]
  39. Raz A., Wyche A., Siegel N., Needleman P. Regulation of fibroblast cyclooxygenase synthesis by interleukin-1. J Biol Chem. 1988 Feb 25;263(6):3022–3028. [PubMed] [Google Scholar]
  40. Reingold D. F., Watters K., Holmberg S., Needleman P. Differential biosynthesis of prostaglandins by hydronephrotic rabbit and cat kidneys. J Pharmacol Exp Ther. 1981 Mar;216(3):510–515. [PubMed] [Google Scholar]
  41. Salvemini D., Misko T. P., Masferrer J. L., Seibert K., Currie M. G., Needleman P. Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7240–7244. doi: 10.1073/pnas.90.15.7240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sheng W. Y., Lysz T. A., Wyche A., Needleman P. Kinetic comparison and regulation of the cascade of microsomal enzymes involved in renal arachidonate and endoperoxide metabolism. J Biol Chem. 1983 Feb 25;258(4):2188–2192. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES