Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1994 May;93(5):1975–1980. doi: 10.1172/JCI117189

Pressure promotes DNA synthesis in rat cultured vascular smooth muscle cells.

K Hishikawa 1, T Nakaki 1, T Marumo 1, M Hayashi 1, H Suzuki 1, R Kato 1, T Saruta 1
PMCID: PMC294305  PMID: 8182128

Abstract

High blood pressure is one of the major risk factors for atherosclerosis. In this study, we examined the effects of pressure on cell proliferation and DNA synthesis in cultured rat vascular smooth muscle cells. Pressure without shear stress and stretch promotes cell proliferation and DNA synthesis in a pressure-dependent manner. Pressure-induced DNA synthesis was inhibited significantly by the phospholipase C (PLC) inhibitor 2-nitro-4-carboxyphenyl-N,N-diphenylcarbamate, the protein kinase C inhibitor H-7, 1-(5-isoquinolinylsulfonyl)-2-methyl-piperazine, staurosporine, and the tyrosine kinase inhibitor ([3,4,5-trihydroxyphenyl]methylene)propanedinitrile. To clarify whether activation of PLC and calcium mobilization are involved in pressure-induced DNA synthesis, production of 1,4,5-inositol trisphosphate (IP3) and intracellular Ca2+ was measured. Pure pressure increased IP3 and intracellular Ca2+ in a pressure-dependent manner. The increases in both IP3 and intracellular Ca2+ were inhibited significantly by 2-nitro-4-carboxyphenyl-N,N-diphenylcarbamate. This study demonstrates a novel cellular mechanism whereby pressure regulates DNA synthesis in vascular smooth muscle cells, possibly via activation of PLC and protein kinase C.

Full text

PDF
1975

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ando J., Ohtsuka A., Korenaga R., Kamiya A. Effect of extracellular ATP level on flow-induced Ca++ response in cultured vascular endothelial cells. Biochem Biophys Res Commun. 1991 Sep 30;179(3):1192–1199. doi: 10.1016/0006-291x(91)91698-c. [DOI] [PubMed] [Google Scholar]
  2. Bevan J. A., Laher I. Pressure and flow-dependent vascular tone. FASEB J. 1991 Jun;5(9):2267–2273. doi: 10.1096/fasebj.5.9.1860618. [DOI] [PubMed] [Google Scholar]
  3. Buga G. M., Gold M. E., Fukuto J. M., Ignarro L. J. Shear stress-induced release of nitric oxide from endothelial cells grown on beads. Hypertension. 1991 Feb;17(2):187–193. doi: 10.1161/01.hyp.17.2.187. [DOI] [PubMed] [Google Scholar]
  4. Erne P., Hermsmeyer K. Intracellular vascular muscle Ca2+ modulation in genetic hypertension. Hypertension. 1989 Aug;14(2):145–151. doi: 10.1161/01.hyp.14.2.145. [DOI] [PubMed] [Google Scholar]
  5. Frangos J. A., Eskin S. G., McIntire L. V., Ives C. L. Flow effects on prostacyclin production by cultured human endothelial cells. Science. 1985 Mar 22;227(4693):1477–1479. doi: 10.1126/science.3883488. [DOI] [PubMed] [Google Scholar]
  6. Harder D. R., Sanchez-Ferrer C., Kauser K., Stekiel W. J., Rubanyi G. M. Pressure releases a transferable endothelial contractile factor in cat cerebral arteries. Circ Res. 1989 Jul;65(1):193–198. doi: 10.1161/01.res.65.1.193. [DOI] [PubMed] [Google Scholar]
  7. Hayashi M., Yamaji Y., Iyori M., Kitajima W., Saruta T. Effect of isoproterenol on intracellular pH of the intercalated cells in the rabbit cortical collecting ducts. J Clin Invest. 1991 Apr;87(4):1153–1157. doi: 10.1172/JCI115112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hishikawa K., Nakaki T., Suzuki H., Saruta T., Kato R. Transmural pressure inhibits nitric oxide release from human endothelial cells. Eur J Pharmacol. 1992 May 14;215(2-3):329–331. doi: 10.1016/0014-2999(92)90051-5. [DOI] [PubMed] [Google Scholar]
  9. Hsieh H. J., Li N. Q., Frangos J. A. Shear stress increases endothelial platelet-derived growth factor mRNA levels. Am J Physiol. 1991 Feb;260(2 Pt 2):H642–H646. doi: 10.1152/ajpheart.1991.260.2.H642. [DOI] [PubMed] [Google Scholar]
  10. Kawahara K., Matsuzaki K. Activation of calcium channel by shear-stress in cultured renal distal tubule cells. Biochem Biophys Res Commun. 1992 Apr 15;184(1):198–205. doi: 10.1016/0006-291x(92)91178-s. [DOI] [PubMed] [Google Scholar]
  11. Kulik T. J., Bialecki R. A., Colucci W. S., Rothman A., Glennon E. T., Underwood R. H. Stretch increases inositol trisphosphate and inositol tetrakisphosphate in cultured pulmonary vascular smooth muscle cells. Biochem Biophys Res Commun. 1991 Oct 31;180(2):982–987. doi: 10.1016/s0006-291x(05)81162-3. [DOI] [PubMed] [Google Scholar]
  12. Leurs R., Brozius M. M., Jansen W., Bast A., Timmerman H. Histamine H1-receptor-mediated cyclic GMP production in guinea-pig lung tissue is an L-arginine-dependent process. Biochem Pharmacol. 1991 Jul 5;42(2):271–277. doi: 10.1016/0006-2952(91)90713-f. [DOI] [PubMed] [Google Scholar]
  13. Majack R. A., Cook S. C., Bornstein P. Control of smooth muscle cell growth by components of the extracellular matrix: autocrine role for thrombospondin. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9050–9054. doi: 10.1073/pnas.83.23.9050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nakaki T., Nakayama M., Yamamoto S., Kato R. Alpha 1-adrenergic stimulation and beta 2-adrenergic inhibition of DNA synthesis in vascular smooth muscle cells. Mol Pharmacol. 1990 Jan;37(1):30–36. [PubMed] [Google Scholar]
  15. Nakaki T., Nakayama M., Yamamoto S., Kato R. Endothelin-mediated stimulation of DNA synthesis in vascular smooth muscle cells. Biochem Biophys Res Commun. 1989 Feb 15;158(3):880–883. doi: 10.1016/0006-291x(89)92804-0. [DOI] [PubMed] [Google Scholar]
  16. Nakaki T., Roth B. L., Chuang D. M., Costa E. Phasic and tonic components in 5-HT2 receptor-mediated rat aorta contraction: participation of Ca++ channels and phospholipase C. J Pharmacol Exp Ther. 1985 Aug;234(2):442–446. [PubMed] [Google Scholar]
  17. Nilsson J., Sjölund M., Palmberg L., Thyberg J., Heldin C. H. Arterial smooth muscle cells in primary culture produce a platelet-derived growth factor-like protein. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4418–4422. doi: 10.1073/pnas.82.13.4418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nollert M. U., Eskin S. G., McIntire L. V. Shear stress increases inositol trisphosphate levels in human endothelial cells. Biochem Biophys Res Commun. 1990 Jul 16;170(1):281–287. doi: 10.1016/0006-291x(90)91271-s. [DOI] [PubMed] [Google Scholar]
  19. Olesen S. P., Clapham D. E., Davies P. F. Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature. 1988 Jan 14;331(6152):168–170. doi: 10.1038/331168a0. [DOI] [PubMed] [Google Scholar]
  20. Riser B. L., Cortes P., Zhao X., Bernstein J., Dumler F., Narins R. G. Intraglomerular pressure and mesangial stretching stimulate extracellular matrix formation in the rat. J Clin Invest. 1992 Nov;90(5):1932–1943. doi: 10.1172/JCI116071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rosati C., Garay R. Flow-dependent stimulation of sodium and cholesterol uptake and cell growth in cultured vascular smooth muscle. J Hypertens. 1991 Nov;9(11):1029–1033. doi: 10.1097/00004872-199111000-00008. [DOI] [PubMed] [Google Scholar]
  22. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
  23. Rubanyi G. M., Freay A. D., Kauser K., Johns A., Harder D. R. Mechanoreception by the endothelium: mediators and mechanisms of pressure- and flow-induced vascular responses. Blood Vessels. 1990;27(2-5):246–257. doi: 10.1159/000158816. [DOI] [PubMed] [Google Scholar]
  24. Sakata A., Ida E., Tominaga M., Onoue K. Calmodulin inhibitors, W-7 and TFP, block the calmodulin-independent activation of NADPH-oxidase by arachidonate in a cell-free system. Biochem Biophys Res Commun. 1987 Oct 14;148(1):112–119. doi: 10.1016/0006-291x(87)91083-7. [DOI] [PubMed] [Google Scholar]
  25. Seckl M., Rozengurt E. Tyrphostin inhibits bombesin stimulation of tyrosine phosphorylation, c-fos expression, and DNA synthesis in Swiss 3T3 cells. J Biol Chem. 1993 May 5;268(13):9548–9554. [PubMed] [Google Scholar]
  26. Sugiyama T., Yoshizumi M., Takaku F., Urabe H., Tsukakoshi M., Kasuya T., Yazaki Y. The elevation of the cytoplasmic calcium ions in vascular smooth muscle cells in SHR--measurement of the free calcium ions in single living cells by lasermicrofluorospectrometry. Biochem Biophys Res Commun. 1986 Nov 26;141(1):340–345. doi: 10.1016/s0006-291x(86)80374-6. [DOI] [PubMed] [Google Scholar]
  27. Takagi Y., Hirata Y., Takata S., Yoshimi H., Fukuda Y., Fujita T., Hidaka H. Effects of protein kinase inhibitors on growth factor-stimulated DNA synthesis in cultured rat vascular smooth muscle cells. Atherosclerosis. 1988 Dec;74(3):227–230. doi: 10.1016/0021-9150(88)90241-9. [DOI] [PubMed] [Google Scholar]
  28. Tomita M., Hirata Y., Takata S., Fujita T. Effects of calcium-antagonists and calmodulin inhibitors on DNA synthesis in cultured rat vascular smooth muscle cells. Endocrinol Jpn. 1987 Apr;34(2):313–318. doi: 10.1507/endocrj1954.34.313. [DOI] [PubMed] [Google Scholar]
  29. Uehara Y., Ishii M., Ishimitsu T., Sugimoto T. Enhanced phospholipase C activity in the vascular wall of spontaneously hypertensive rats. Hypertension. 1988 Jan;11(1):28–33. doi: 10.1161/01.hyp.11.1.28. [DOI] [PubMed] [Google Scholar]
  30. Winkles J. A., Friesel R., Burgess W. H., Howk R., Mehlman T., Weinstein R., Maciag T. Human vascular smooth muscle cells both express and respond to heparin-binding growth factor I (endothelial cell growth factor). Proc Natl Acad Sci U S A. 1987 Oct;84(20):7124–7128. doi: 10.1073/pnas.84.20.7124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. van Kleef E. M., Smits J. F., De Mey J. G., Cleutjens J. P., Lombardi D. M., Schwartz S. M., Daemen M. J. Alpha 1-adrenoreceptor blockade reduces the angiotensin II-induced vascular smooth muscle cell DNA synthesis in the rat thoracic aorta and carotid artery. Circ Res. 1992 Jun;70(6):1122–1127. doi: 10.1161/01.res.70.6.1122. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES