Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1994 May;93(5):1994–1999. doi: 10.1172/JCI117192

Identification of mutations in the gene for glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1a.

K J Lei 1, C J Pan 1, L L Shelly 1, J L Liu 1, J Y Chou 1
PMCID: PMC294308  PMID: 8182131

Abstract

Glycogen storage disease (GSD) type 1a is an autosomal recessive inborn error of metabolism caused by a deficiency in microsomal glucose-6-phosphatase (G6Pase), the key enzyme in glucose homeostasis. Southern blot hybridization analysis using a panel of human-hamster hybrids showed that human G6Pase is a single-copy gene located on chromosome 17. To correlate specific defects with clinical manifestations of this disorder, we identified mutations in the G6Pase gene of GSD type 1a patients. In the G6Pase gene of a compound heterozygous patient (LLP), two mutations in exon 2 of one allele and exon 5 of the other allele were identified. The exon 2 mutation converts an arginine at codon 83 to a cysteine (R83C). This mutation, previously identified by us in another GSD type 1a patient, was shown to have no detectable phosphohydrolase activity. The exon 5 mutation in the G6Pase gene of LLP converts a glutamine codon at 347 to a stop (Q347SP). This Q347SP mutation was also detected in all exon 5 subclones (five for each patient) of two homozygous patients, KB and CB, siblings of the same parents. The predicted Q347SP mutant G6Pase is a truncated protein of 346 amino acids, 11 amino acids shorter than the wild type G6Pase of 357 residues. Site-directed mutagenesis and transient expression assays demonstrated that G6Pase-Q347SP was devoid of G6Pase activity. G6Pase is an endoplasmic reticulum (ER) membrane-associated protein containing an ER retention signal, two lysines (KK), located at residues 354 and 355. We showed that the G6Pase-K355SP mutant containing a lysine-355 to stop codon mutation is enzymatically active. Our data demonstrate that the ER protein retention signal in human G6Pase is not essential for activity. However, residues 347-354 may be required for optimal G6Pase catalysis.

Full text

PDF
1994

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arion W. J., Lange A. J., Walls H. E., Ballas L. M. Evidence for the participation of independent translocation for phosphate and glucose 6-phosphate in the microsomal glucose-6-phosphatase system. Interactions of the system with orthophosphate, inorganic pyrophosphate, and carbamyl phosphate. J Biol Chem. 1980 Nov 10;255(21):10396–10406. [PubMed] [Google Scholar]
  2. Burchell A., Hume R., Burchell B. A new microtechnique for the analysis of the human hepatic microsomal glucose-6-phosphatase system. Clin Chim Acta. 1988 Apr 15;173(2):183–191. doi: 10.1016/0009-8981(88)90256-2. [DOI] [PubMed] [Google Scholar]
  3. CORI G. T., CORI C. F. Glucose-6-phosphatase of the liver in glycogen storage disease. J Biol Chem. 1952 Dec;199(2):661–667. [PubMed] [Google Scholar]
  4. Chen Y. T., Cornblath M., Sidbury J. B. Cornstarch therapy in type I glycogen-storage disease. N Engl J Med. 1984 Jan 19;310(3):171–175. doi: 10.1056/NEJM198401193100306. [DOI] [PubMed] [Google Scholar]
  5. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  6. Cooper D. N., Youssoufian H. The CpG dinucleotide and human genetic disease. Hum Genet. 1988 Feb;78(2):151–155. doi: 10.1007/BF00278187. [DOI] [PubMed] [Google Scholar]
  7. Holliday R., Grigg G. W. DNA methylation and mutation. Mutat Res. 1993 Jan;285(1):61–67. doi: 10.1016/0027-5107(93)90052-h. [DOI] [PubMed] [Google Scholar]
  8. Jackson M. R., Nilsson T., Peterson P. A. Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J. 1990 Oct;9(10):3153–3162. doi: 10.1002/j.1460-2075.1990.tb07513.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lehrach H., Diamond D., Wozney J. M., Boedtker H. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry. 1977 Oct 18;16(21):4743–4751. doi: 10.1021/bi00640a033. [DOI] [PubMed] [Google Scholar]
  10. Lei K. J., Shelly L. L., Pan C. J., Sidbury J. B., Chou J. Y. Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease type 1a. Science. 1993 Oct 22;262(5133):580–583. doi: 10.1126/science.8211187. [DOI] [PubMed] [Google Scholar]
  11. Munro S., Pelham H. R. A C-terminal signal prevents secretion of luminal ER proteins. Cell. 1987 Mar 13;48(5):899–907. doi: 10.1016/0092-8674(87)90086-9. [DOI] [PubMed] [Google Scholar]
  12. Nilsson T., Jackson M., Peterson P. A. Short cytoplasmic sequences serve as retention signals for transmembrane proteins in the endoplasmic reticulum. Cell. 1989 Aug 25;58(4):707–718. doi: 10.1016/0092-8674(89)90105-0. [DOI] [PubMed] [Google Scholar]
  13. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sukalski K. A., Nordlie R. C. Glucose-6-phosphatase: two concepts of membrane-function relationship. Adv Enzymol Relat Areas Mol Biol. 1989;62:93–117. doi: 10.1002/9780470123089.ch3. [DOI] [PubMed] [Google Scholar]
  15. Tasheva E. S., Roufa D. J. Deoxycytidine methylation and the origin of spontaneous transition mutations in mammalian cells. Somat Cell Mol Genet. 1993 May;19(3):275–283. doi: 10.1007/BF01233075. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES