Abstract
A biphasic synthesis of 1,3-beta-glucanase occurred when cells of Saccharomyces cerevisiae AP-1 (a/alpha) were incubated in sporulation medium. The capacity to degrade laminarin increased very slowly during the first 7 h but at a much faster rate thereafter. Changes occurring during the first period were not sporulation specific since the moderate increase in activity against laminarin was insensitive to glutamine and hydroxyurea and also took place in the nonsporulating strain S. cerevisiae AP-1 (alpha/alpha). However, the changes taking place after 7 h must be included in the group of sporulation-specific events since they were inhibited by glucose, glutamine, and hydroxyurea and did not occur in the nonsporulating diploid. Consequently, only when the cells had been incubated for at least 7 h in sporulation medium did full induction of activity against laminarin take place upon shift to a medium which favored vegetative growth. Changes in the relative proportions of the vegetative glucanases, namely, endo- and exo-1,3-beta-glucanase, and the formation of a new sporulation-specific 1,3-beta-glucanase account for the observed events and are the consequence of the expression of the sporulation program.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Betz H., Weiser U. Protein degradation during yeast sporulation. Enzyme and cytochrome patterns. Eur J Biochem. 1976 Nov 15;70(2):385–395. doi: 10.1111/j.1432-1033.1976.tb11028.x. [DOI] [PubMed] [Google Scholar]
- Betz H., Weisner U. Protein degradation and proteinases during yeast sporulation. Eur J Biochem. 1976 Feb 2;62(1):65–76. doi: 10.1111/j.1432-1033.1976.tb10098.x. [DOI] [PubMed] [Google Scholar]
- Biely P., Krátký Z., Bauer S. Interaction of concanavalin A with external mannan-proteins of Saccharomyces cerevisiae. Glycoprotein nature of beta-glucanases. Eur J Biochem. 1976 Nov 1;70(1):75–81. doi: 10.1111/j.1432-1033.1976.tb10957.x. [DOI] [PubMed] [Google Scholar]
- Colonna W. J., Magee P. T. Glycogenolytic enzymes in sporulating yeast. J Bacteriol. 1978 Jun;134(3):844–853. doi: 10.1128/jb.134.3.844-853.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Durieu-Trautmann O., Delavier-Klutchko C. Effect of ammonia and glutamine on macromolecule synthesis and breakdown during sporulation of Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1977 Nov 21;79(2):438–442. doi: 10.1016/0006-291x(77)90177-2. [DOI] [PubMed] [Google Scholar]
- Hopper A. K., Magee P. T., Welch S. K., Friedman M., Hall B. D. Macromolecule synthesis and breakdown in relation to sporulation and meiosis in yeast. J Bacteriol. 1974 Aug;119(2):619–628. doi: 10.1128/jb.119.2.619-628.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kane S. M., Roth R. Carbohydrate metabolism during ascospore development in yeast. J Bacteriol. 1974 Apr;118(1):8–14. doi: 10.1128/jb.118.1.8-14.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klar A. J., Halvorson H. O. Proteinase activities of Saccharomyces cerevisiae during sporulation. J Bacteriol. 1975 Nov;124(2):863–869. doi: 10.1128/jb.124.2.863-869.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Opheim D. J. alpha-D-Mannosidase of Saccharomyces cerevisiae. Characterization and modulation of activity. Biochim Biophys Acta. 1978 May 11;524(1):121–130. doi: 10.1016/0005-2744(78)90110-9. [DOI] [PubMed] [Google Scholar]
- Santos T., del Rey F., Conde J., Villanueva J. R., Nombela C. Saccharomyces cerevisiae mutant defective in exo-1,3-beta-glucanase production. J Bacteriol. 1979 Aug;139(2):333–338. doi: 10.1128/jb.139.2.333-338.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simchen G., Piñon R., Salts Y. Sporulation in Saccharomyces cerevisiae: premeiotic DNA synthesis, readiness and commitment. Exp Cell Res. 1972 Nov;75(1):207–218. doi: 10.1016/0014-4827(72)90538-1. [DOI] [PubMed] [Google Scholar]
- del Rey F., Santos T., García-Acha I., Nombela C. Synthesis of 1,3-beta-glucanases in Saccharomyces cerevisiae during the mitotic cycle, mating, and sporulation. J Bacteriol. 1979 Sep;139(3):924–931. doi: 10.1128/jb.139.3.924-931.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]