Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Aug;143(2):628–636. doi: 10.1128/jb.143.2.628-636.1980

Continuous monitoring, by mass spectrometry, of H2 production and recycling in Rhodopseudomonas capsulata.

Y Jouanneau, B C Kelley, Y Berlier, P A Lespinat, P M Vignais
PMCID: PMC294329  PMID: 7009556

Abstract

Hydrogen evolution and consumption by cell and chromatophore suspensions of the photosynthetic bacterium Rhodopseudomonas capsulata was measured with a sensitive and specific mass spectrometric technique which directly monitors dissolved gases. H2 production by nitrogenase was inhibited by acetylene and restored by carbon monoxide. An H2 evolution activity coupled with HD formation and D2 uptake (H-D exchange) was unaffected by C2H2 and CO. Cultures lacking nitrogenase activity also exhibited H-D exchange activity, which was catalyzed by a membrane-bound hydrogenase present in the chromatophores of R. capsulata. A net hydrogen uptake, mediated by hydrogenase, was observed when electron acceptors such as CO2, O2, or ferricyanide were present in the medium.

Full text

PDF
628

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dixon R. O. Hydrogenase in legume root nodule bacteroids: occurrence and properties. Arch Mikrobiol. 1972;85(3):193–201. doi: 10.1007/BF00408844. [DOI] [PubMed] [Google Scholar]
  2. Dixon R. O. Nitrogenase--hydrogenase interrelationships in Rhizobia. Biochimie. 1978;60(3):233–236. doi: 10.1016/s0300-9084(78)80819-0. [DOI] [PubMed] [Google Scholar]
  3. Gitlitz P. H., Krasna A. I. Structural and catalytic properties of hydrogenase from Chromatium. Biochemistry. 1975 Jun 17;14(12):2561–2568. doi: 10.1021/bi00683a001. [DOI] [PubMed] [Google Scholar]
  4. Hillmer P., Gest H. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. J Bacteriol. 1977 Feb;129(2):724–731. doi: 10.1128/jb.129.2.724-731.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hillmer P., Gest H. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells. J Bacteriol. 1977 Feb;129(2):732–739. doi: 10.1128/jb.129.2.732-739.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hwang J. C., Chen C. H., Burris R. H. Inhibition of nitrogenase-catalyzed reductions. Biochim Biophys Acta. 1973 Jan 18;292(1):256–270. doi: 10.1016/0005-2728(73)90270-3. [DOI] [PubMed] [Google Scholar]
  7. Jackson E. K., Parshall G. W., Hardy R. W. Hydrogen reactions of nitrogenase. Formation of the molecule HD by nitrogenase and by an inorganic model. J Biol Chem. 1968 Oct 10;243(19):4952–4958. [PubMed] [Google Scholar]
  8. KRASNA A. I., RIKLIS E., RITTENBERG D. The purification and properties of the hydrogenase of Desulfovibrio desulfuricans. J Biol Chem. 1960 Sep;235:2717–2720. [PubMed] [Google Scholar]
  9. Kelley B. C., Meyer C. M., Gandy C., Vignais P. M. Hydrogen recycling by Rhodopseudomonas capsulata. FEBS Lett. 1977 Sep 15;81(2):281–285. doi: 10.1016/0014-5793(77)80535-8. [DOI] [PubMed] [Google Scholar]
  10. Kleiner D., Burris R. H. The hydrogenase of Clostridium pasteurianum. Kinetic studies and the role of molybdenum. Biochim Biophys Acta. 1970 Sep 16;212(3):417–427. doi: 10.1016/0005-2744(70)90247-0. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Lespinat P. A., Gester R., Berlier Y. Direct mass-spectrometric determination of the relationship between respiration, hydrogenase and nitrogenase activities in Azotobacter chroococcum. Biochimie. 1978;60(3):339–341. doi: 10.1016/s0300-9084(78)80831-1. [DOI] [PubMed] [Google Scholar]
  13. Madigan M. T., Wall J. D., Gest H. Dark anaerobic dinitrogen fixation by a photosynthetic microorganism. Science. 1979 Jun 29;204(4400):1429–1430. doi: 10.1126/science.204.4400.1429. [DOI] [PubMed] [Google Scholar]
  14. Meyer J., Kelley B. C., Vignais P. M. Effect of light nitrogenase function and synthesis in Rhodopseudomonas capsulata. J Bacteriol. 1978 Oct;136(1):201–208. doi: 10.1128/jb.136.1.201-208.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Meyer J., Kelley B. C., Vignais P. M. Nitrogen fixation and hydrogen metabolism in photosynthetic bacteria. Biochimie. 1978;60(3):245–260. doi: 10.1016/s0300-9084(78)80821-9. [DOI] [PubMed] [Google Scholar]
  16. PUREC L., KRASNA A. I., RITTENBERG D. The inhibition of hydrogenase by carbon monoxide and the reversal of this inhibition by light. Biochemistry. 1962 Mar;1:270–275. doi: 10.1021/bi00908a013. [DOI] [PubMed] [Google Scholar]
  17. Rivera-Ortiz J. M., Burris R. H. Interactions among substrates and inhibitors of nitrogenase. J Bacteriol. 1975 Aug;123(2):537–545. doi: 10.1128/jb.123.2.537-545.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Smith L. A., Hill S., Yates M. G. Inhibition by acetylene of conventional hydrogenase in nitrogen-fixing bacteria. Nature. 1976 Jul 15;262(5565):209–210. doi: 10.1038/262209a0. [DOI] [PubMed] [Google Scholar]
  19. TAMIYA N., MILLER S. L. Kinetic studies on hydrogenase. J Biol Chem. 1963 Jun;238:2194–2198. [PubMed] [Google Scholar]
  20. Weaver P. F., Wall J. D., Gest H. Characterization of Rhodopseudomonas capsulata. Arch Microbiol. 1975 Nov 7;105(3):207–216. doi: 10.1007/BF00447139. [DOI] [PubMed] [Google Scholar]
  21. Yagi T., Tsuda M., Inokuchi H. Kinetic studies on hydrogenase. Parahydrogen-orthohydrogen conversion and hydrogen-deuterium exchange reactions. J Biochem. 1973 May;73(5):1069–1081. doi: 10.1093/oxfordjournals.jbchem.a130161. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES