Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Aug;143(2):693–702. doi: 10.1128/jb.143.2.693-702.1980

Biochemical correlations among the thermophilic enteric yeasts Torulopsis bovina, Torulopsis pintolopesii, Saccharomyces telluris, and Candida slooffii.

K Watson, H Arthur, M Blakey
PMCID: PMC294342  PMID: 7193674

Abstract

Spontaneous and drug-induced respiration-deficient mutants were isolated from the thermophilic enteric yeasts Torulopsis bovina and Saccharomyces telluris. The biochemical properties of these yeasts were compared with those of the two naturally occurring respiration-deficient thermophilic yeasts T. pintolopesii and Candida slooffii. Succinate dehydrogenase was not detected in mitochondrial fractions from C. slooffii, but was present in all other species. Cytochrome c oxidase, succinate oxidase, and reduced nicotinamide adenine dinucleotide oxidase were not detected in C. slooffii, T. pintolopesii, and the respiration-deficient mutants. Low-temperature cytochrome spectra revealed the presence of cytochromes aa3, b, c1, and c in T. bovina and S. telluris; cytochromes b, c1, and c in C. slooffii and T. pintolopesii; and cytochromes c1 and c in the spontaneous respiration-deficient mutants. Palmitoleic and oleic acids were the major fatty acids in all the species. It was noteworthy that T. pintolopesii was rich in lauric and myristic acids. CsCl equilibrium centrifugation experiments showed the presence in all the yeasts of a light-buoyant-density (1.6785 to 1.6837-g/cm3) deoxyribonucleic acid band which was identified as mitochondrial deoxyribonucleic acid by its selective elimination on treatment of cells with ethidium bromide. The latter result indicated that the spontaneous respiration-deficient mutants were similar to cytoplasmic petite mutants of S. cerevisiae. Although classical assimilation and fermentation tests indicated that the spontaneous respiration-deficient mutants were strains of T. pintolopesii, it was concluded, on the basis of marked physiological and biochemical differences, that this was not the case.

Full text

PDF
693

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDREASEN A. A., STIER T. J. Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. J Cell Physiol. 1954 Jun;43(3):271–281. doi: 10.1002/jcp.1030430303. [DOI] [PubMed] [Google Scholar]
  2. Arthur H., Watson K., McArthur C. R., Clark-Walker G. D. Naturally occurring respiratory deficient Candida slooffii strains resemble petite mutants. Nature. 1978 Feb 23;271(5647):750–752. doi: 10.1038/271750a0. [DOI] [PubMed] [Google Scholar]
  3. Arthur H., Watson K. Thermal adaptation in yeast: growth temperatures, membrane lipid, and cytochrome composition of psychrophilic, mesophilic, and thermophilic yeasts. J Bacteriol. 1976 Oct;128(1):56–68. doi: 10.1128/jb.128.1.56-68.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BULDER C. J. INDUCTION OF PETITE MUTATION AND INHIBITION OF SYNTHESIS OF RESPIRATORY ENZYMES IN VARIOUS YEASTS. Antonie Van Leeuwenhoek. 1964;30:1–9. doi: 10.1007/BF02046695. [DOI] [PubMed] [Google Scholar]
  5. Claisse M. L., Pajot P. F. Presence of cytochrome c1 in cytoplasmic "petite" mutants of Saccharomyces cerevisiae. Eur J Biochem. 1974 Nov 1;49(1):49–59. doi: 10.1111/j.1432-1033.1974.tb03810.x. [DOI] [PubMed] [Google Scholar]
  6. Clark-Walker G. D. Isolation of circular DNA from a mitochondrial fraction from yeast. Proc Natl Acad Sci U S A. 1972 Feb;69(2):388–392. doi: 10.1073/pnas.69.2.388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cramer J. H., Bhargava M. M., Halvorson H. O. Isolation and characterization of DNA of Saccharomyces cerevisiae. J Mol Biol. 1972 Oct 28;71(1):11–20. doi: 10.1016/0022-2836(72)90396-8. [DOI] [PubMed] [Google Scholar]
  8. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  9. Goldring E. S., Grossman L. I., Krupnick D., Cryer D. R., Marmur J. The petite mutation in yeast. Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide. J Mol Biol. 1970 Sep 14;52(2):323–335. doi: 10.1016/0022-2836(70)90033-1. [DOI] [PubMed] [Google Scholar]
  10. KATES M., BAXTER R. M. Lipid composition of mesophilic and psychrophilic yeasts (Candida species) as influenced by environmental temperature. Can J Biochem Physiol. 1962 Sep;40:1213–1227. [PubMed] [Google Scholar]
  11. KREGER-VAN RIJ N. J. The relationship between Saccharomyces tellustris and Candida bovina. Antonie Van Leeuwenhoek. 1958;24(2):137–144. doi: 10.1007/BF02548441. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Locker J., Rabinowitz M., Getz G. S. Electron microscopic and renaturation kinetic analysis of mitochondrial DNA of cytoplasmic petite mutants of Saccharomyces cerevisiae. J Mol Biol. 1974 Sep 15;88(2):489–507. doi: 10.1016/0022-2836(74)90497-5. [DOI] [PubMed] [Google Scholar]
  14. Mounolou J. C., Jakob H., Slonimski P. P. Mitochondrial DNA from yeast "petite" mutants: specific changes in buoyant density corresponding to different cytoplasmic mutations. Biochem Biophys Res Commun. 1966 Jul 20;24(2):218–224. doi: 10.1016/0006-291x(66)90723-6. [DOI] [PubMed] [Google Scholar]
  15. Nagley P., Linnane A. W. Biogenesis of mitochondria. XXI. Studies on the nature of the mitochondrial genome in yeast: the degenerative effects of ethidium bromide on mitochondrial genetic information in a respiratory competent strain. J Mol Biol. 1972 Apr 28;66(1):181–193. doi: 10.1016/s0022-2836(72)80015-9. [DOI] [PubMed] [Google Scholar]
  16. O'Connor R. M., McArthur C. R., Clark-Walker G. D. Respiratory-deficient mutants of Torulopsis glabrata, a yeast with circular mitochondrial deoxyribonucleic acid of 6 mu m. J Bacteriol. 1976 May;126(2):959–968. doi: 10.1128/jb.126.2.959-968.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. OGUR M., ST. JOHN R., NAGAI S. Tetrazolium overlay technique for population studies of respiration deficiency in yeast. Science. 1957 May 10;125(3254):928–929. doi: 10.1126/science.125.3254.928. [DOI] [PubMed] [Google Scholar]
  18. Travassos L. R., Cury R. Thermophilic enteric yeasts. Annu Rev Microbiol. 1971;25:49–74. doi: 10.1146/annurev.mi.25.100171.000405. [DOI] [PubMed] [Google Scholar]
  19. Watson K., Arthur H. Leucosporidium yeasts: obligate psychrophiles which alter membrane-lipid and cytochrome composition with temperature. J Gen Microbiol. 1976 Nov;97(1):11–18. doi: 10.1099/00221287-97-1-11. [DOI] [PubMed] [Google Scholar]
  20. Watson K., Arthur H., Morton H. Thermal adaptation in yeast: obligate psychrophiles are obligate aerobes, and obligate thermophiles are facultative anaerobes. J Bacteriol. 1978 Nov;136(2):815–817. doi: 10.1128/jb.136.2.815-817.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Watson K., Bertoli E., Griffiths D. E. Phase transitions in yeast mitochondrial membranes. The effect of temperature on the energies of activation of the respiratory enzymes of Saccharomyces cerevisiae. Biochem J. 1975 Feb;146(2):401–407. doi: 10.1042/bj1460401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wilson D. F., Epel D. The cytochrome system of sea urchin sperm. Arch Biochem Biophys. 1968 Jul;126(1):83–90. doi: 10.1016/0003-9861(68)90562-6. [DOI] [PubMed] [Google Scholar]
  23. van Gelder B. F. On cytochrome c oxidase. I. The extinction coefficients of cytochrome a and cytochrome a3. Biochim Biophys Acta. 1966 Apr 12;118(1):36–46. doi: 10.1016/s0926-6593(66)80142-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES