Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1994 May;93(5):2244–2250. doi: 10.1172/JCI117222

Vascular mechanisms of cyclosporin-induced hypertension in the rat.

J B Roullet 1, H Xue 1, D A McCarron 1, S Holcomb 1, W M Bennett 1
PMCID: PMC294377  PMID: 8182156

Abstract

Numerous studies have explored the pathogenesis of cyclosporin A (CysA)-induced hypertension; however, none has assessed the impact of CysA treatment on resistance arteries in the setting of elevated blood pressure. Therefore, we studied the chronic effect of CysA on rat mesenteric artery resistance vessels (ex vivo). CysA (25 mg/kg per d for 7 d), but not vehicle, significantly raised systolic blood pressure (13.4 +/- 2.2 mmHg, P < 0.003, n = 9 per group). The resistance vessels from CysA-treated rats showed a small but significant decrease in norepinephrine sensitivity (P < 0.03) and a pronounced decrease in endothelium-dependent and -independent relaxation (P < 0.001) compared to controls. Endothelin-1 sensitivity tended to be diminished (P = 0.07). The direct (in vitro) effect of CysA was subsequently evaluated in resistance vessels from nontreated animals (n = 8) and exposed to CysA (2 micrograms/ml) for 24 h. As observed in vivo, CysA significantly decreased endothelium-dependent and -independent relaxations (P < 0.05) and attenuated norepinephrine sensitivity (P = 0.06). Methylene blue, a nitric oxide quencher, significantly inhibited the acetylcholine-induced relaxation in control, but not in CysA vessels, suggesting a selective action of CysA on the nitric oxide pathway. We conclude that CysA-induced hypertension is the consequence of a primary effect on resistance vessel relaxation, not increased vasoconstriction, as previously suggested.

Full text

PDF
2244

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bellet M., Cabrol C., Sassano P., Léger P., Corvol P., Ménard J. Systemic hypertension after cardiac transplantation: effect of cyclosporine on the renin-angiotensin-aldosterone system. Am J Cardiol. 1985 Dec 1;56(15):927–931. doi: 10.1016/0002-9149(85)90406-0. [DOI] [PubMed] [Google Scholar]
  2. Bukoski R. D., Xue H. On the vascular inotropic action of 1,25-(OH)2 vitamin D3. Am J Hypertens. 1993 May;6(5 Pt 1):388–396. doi: 10.1093/ajh/6.5.388. [DOI] [PubMed] [Google Scholar]
  3. Chapman J. R., Marcen R., Arias M., Raine A. E., Dunnill M. S., Morris P. J. Hypertension after renal transplantation. A comparison of cyclosporine and conventional immunosuppression. Transplantation. 1987 Jun;43(6):860–864. [PubMed] [Google Scholar]
  4. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  5. Gallego M. J., Lopez Farre A., Riesco A., Monton M., Grandes S. M., Barat A., Hernando L., Casado S., Caramelo C. A. Blockade of endothelium-dependent responses in conscious rats by cyclosporin A: effect of L-arginine. Am J Physiol. 1993 Mar;264(3 Pt 2):H708–H714. doi: 10.1152/ajpheart.1993.264.3.H708. [DOI] [PubMed] [Google Scholar]
  6. Gerkens J. F., Bhagwandeen S. B., Dosen P. J., Smith A. J. The effect of salt intake on cyclosporine-induced impairment of renal function in rats. Transplantation. 1984 Oct;38(4):412–417. doi: 10.1097/00007890-198410000-00019. [DOI] [PubMed] [Google Scholar]
  7. Gerkens J. F. Cyclosporine treatment of normal rats produces a rise in blood pressure and decreased renal vascular responses to nerve stimulation, vasoconstrictors and endothelium-dependent dilators. J Pharmacol Exp Ther. 1989 Sep;250(3):1105–1112. [PubMed] [Google Scholar]
  8. Huang H. C., Rego A., Vargas R., Foegh M. L., Ramwell P. W. Nitroprusside-induced vascular relaxation is attenuated in organ-transplanted animals treated with cyclosporine. Transplant Proc. 1987 Aug;19(4 Suppl 5):126–130. [PubMed] [Google Scholar]
  9. Kahan B. D. Cyclosporine. N Engl J Med. 1989 Dec 21;321(25):1725–1738. doi: 10.1056/NEJM198912213212507. [DOI] [PubMed] [Google Scholar]
  10. Kaskel F. J., Devarajan P., Arbeit L. A., Partin J. S., Moore L. C. Cyclosporine nephrotoxicity: sodium excretion, autoregulation, and angiotensin II. Am J Physiol. 1987 Apr;252(4 Pt 2):F733–F742. doi: 10.1152/ajprenal.1987.252.4.F733. [DOI] [PubMed] [Google Scholar]
  11. Kon V., Sugiura M., Inagami T., Harvie B. R., Ichikawa I., Hoover R. L. Role of endothelin in cyclosporine-induced glomerular dysfunction. Kidney Int. 1990 Jun;37(6):1487–1491. doi: 10.1038/ki.1990.139. [DOI] [PubMed] [Google Scholar]
  12. Lovenberg W., Miller R. C. Endothelin: a review of its effects and possible mechanisms of action. Neurochem Res. 1990 Apr;15(4):407–417. doi: 10.1007/BF00969926. [DOI] [PubMed] [Google Scholar]
  13. Lüscher T. F., Yang Z. H., Diederich D., Bühler F. R. Endothelium-derived vasoactive substances: potential role in hypertension, atherosclerosis, and vascular occlusion. J Cardiovasc Pharmacol. 1989;14 (Suppl 6):S63–S69. [PubMed] [Google Scholar]
  14. Marczin N., Ryan U. S., Catravas J. D. Methylene blue inhibits nitrovasodilator- and endothelium-derived relaxing factor-induced cyclic GMP accumulation in cultured pulmonary arterial smooth muscle cells via generation of superoxide anion. J Pharmacol Exp Ther. 1992 Oct;263(1):170–179. [PubMed] [Google Scholar]
  15. Masaki T., Kimura S., Yanagisawa M., Goto K. Molecular and cellular mechanism of endothelin regulation. Implications for vascular function. Circulation. 1991 Oct;84(4):1457–1468. doi: 10.1161/01.cir.84.4.1457. [DOI] [PubMed] [Google Scholar]
  16. McAuley F. T., Whiting P. H., Thomson A. W., Simpson J. G. The influence of enalapril or spironolactone on experimental cyclosporin nephrotoxicity. Biochem Pharmacol. 1987 Mar 1;36(5):699–703. doi: 10.1016/0006-2952(87)90721-0. [DOI] [PubMed] [Google Scholar]
  17. McNally P. G., Feehally J. Pathophysiology of cyclosporin A nephrotoxicity: experimental and clinical observations. Nephrol Dial Transplant. 1992;7(8):791–804. [PubMed] [Google Scholar]
  18. Mikkelsen E. O., Poulsen S. H., Nyborg N. C., Korsgaard N., Sehested J. Difference between aortic and renal vascular reactivity in cyclosporin A treated rats and the effect of cicletanine. Naunyn Schmiedebergs Arch Pharmacol. 1992 Mar;345(3):356–361. doi: 10.1007/BF00168698. [DOI] [PubMed] [Google Scholar]
  19. Miyamori I., Takeda Y., Yoneda T., Takeda R. Endothelin-1 release from mesenteric arteries of spontaneously hypertensive rats. J Cardiovasc Pharmacol. 1991;17 (Suppl 7):S408–S410. doi: 10.1097/00005344-199100177-00115. [DOI] [PubMed] [Google Scholar]
  20. Moss N. G., Powell S. L., Falk R. J. Intravenous cyclosporine activates afferent and efferent renal nerves and causes sodium retention in innervated kidneys in rats. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8222–8226. doi: 10.1073/pnas.82.23.8222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Murray B. M., Paller M. S., Ferris T. F. Effect of cyclosporine administration on renal hemodynamics in conscious rats. Kidney Int. 1985 Nov;28(5):767–774. doi: 10.1038/ki.1985.196. [DOI] [PubMed] [Google Scholar]
  22. Natelson B. H., Ottenweller J. E., Servatius R. J., Drastal S., Bergen M. T., Tapp W. N. Effect of stress and food restriction on blood pressure and lifespan of Dahl salt-sensitive rats. J Hypertens. 1992 Dec;10(12):1457–1462. doi: 10.1097/00004872-199210120-00004. [DOI] [PubMed] [Google Scholar]
  23. Nayler W. G., Gu X. H., Casley D. J., Panagiotopoulos S., Liu J., Mottram P. L. Cyclosporine increases endothelin-1 binding site density in cardiac cell membranes. Biochem Biophys Res Commun. 1989 Sep 29;163(3):1270–1274. doi: 10.1016/0006-291x(89)91115-7. [DOI] [PubMed] [Google Scholar]
  24. O'Neil G. S., Chester A. H., Kushwaha S., Rose M., Tadjkarimi S., Yacoub M. H. Cyclosporin treatment does not impair the release of nitric oxide in human coronary arteries. Br Heart J. 1991 Sep;66(3):212–216. doi: 10.1136/hrt.66.3.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rego A., Vargas R., Cathapermal S., Kuwahara M., Foegh M. L., Ramwell P. W. Systemic vascular effects of cyclosporin A treatment in normotensive rats. J Pharmacol Exp Ther. 1991 Nov;259(2):905–915. [PubMed] [Google Scholar]
  26. Rego A., Vargas R., Foegh M. L., Ramwell P. W. Effect of cyclosporine A treatment on vascular reactivity of the rat thoracic aorta. Transplant Proc. 1988 Jun;20(3 Suppl 3):572–577. [PubMed] [Google Scholar]
  27. Rego A., Vargas R., Suarez K. R., Foegh M. L., Ramwell P. W. Mechanism of cyclosporin potentiation of vasoconstriction of the isolated rat mesenteric arterial bed: role of extracellular calcium. J Pharmacol Exp Ther. 1990 Sep;254(3):799–808. [PubMed] [Google Scholar]
  28. Rego A., Vargas R., Wroblewska B., Foegh M. L., Ramwell P. W. Attenuation of vascular relaxation and cyclic GMP responses by cyclosporin A. J Pharmacol Exp Ther. 1990 Jan;252(1):165–170. [PubMed] [Google Scholar]
  29. Richards N. T., Poston L., Hilton P. J. Cyclosporin A inhibits endothelium-dependent, prostanoid-induced relaxation in human subcutaneous resistance vessels. J Hypertens. 1990 Feb;8(2):159–163. doi: 10.1097/00004872-199002000-00010. [DOI] [PubMed] [Google Scholar]
  30. Richards N. T., Poston L., Hilton P. J. Cyclosporine A inhibits relaxation but does not induce vasoconstriction in human subcutaneous resistance vessels. J Hypertens. 1989 Jan;7(1):1–3. doi: 10.1097/00004872-198901000-00001. [DOI] [PubMed] [Google Scholar]
  31. Struijker Boudier H. A., le Noble J. L., Messing M. W., Huijberts M. S., le Noble F. A., van Essen H. The microcirculation and hypertension. J Hypertens Suppl. 1992 Dec;10(7):S147–S156. [PubMed] [Google Scholar]
  32. Takeda Y., Miyamori I., Yoneda T., Takeda R. Endothelin-1 release from the mesenteric arteries of cyclosporine-treated rats. Eur J Pharmacol. 1992 Mar 31;213(3):445–447. doi: 10.1016/0014-2999(92)90635-h. [DOI] [PubMed] [Google Scholar]
  33. Takenaka T., Hashimoto Y., Epstein M. Diminished acetylcholine-induced vasodilation in renal microvessels of cyclosporine-treated rats. J Am Soc Nephrol. 1992 Jul;3(1):42–50. doi: 10.1681/ASN.V3142. [DOI] [PubMed] [Google Scholar]
  34. Textor S. C., Smith-Powell L., Telles T. Altered pressor responses to NE and ANG II during cyclosporin A administration to conscious rats. Am J Physiol. 1990 Mar;258(3 Pt 2):H854–H860. doi: 10.1152/ajpheart.1990.258.3.H854. [DOI] [PubMed] [Google Scholar]
  35. Whitworth J. A., Mills E. H., Coghlan J. P., McDougall J. G., Nelson M. A., Spence C. D., Tresham J. J., Scoggins B. A. The haemodynamic effects of cyclosporin A in sheep. Clin Exp Pharmacol Physiol. 1987 Jul;14(7):573–580. doi: 10.1111/j.1440-1681.1987.tb01876.x. [DOI] [PubMed] [Google Scholar]
  36. Xue H., Bukoski R. D., McCarron D. A., Bennett W. M. Induction of contraction in isolated rat aorta by cyclosporine. Transplantation. 1987 May;43(5):715–718. doi: 10.1097/00007890-198705000-00022. [DOI] [PubMed] [Google Scholar]
  37. Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]
  38. Yaris E., Tuncer M., Ilhan M. Actions of cyclosporin A preparation and Cremophor-EL in rabbit mesenteric artery and thoracic aorta in vitro. Clin Sci (Lond) 1992 Aug;83(2):179–182. doi: 10.1042/cs0830179. [DOI] [PubMed] [Google Scholar]
  39. de Lima J. J., Bennett W. M., Coghlan J. P., McDougall J. G., Tresham J. J., Whitworth J. A., Scoggins B. A. Cyclosporin A and pressor responsiveness in sheep. J Cardiovasc Pharmacol. 1988 Jun;11(6):676–681. doi: 10.1097/00005344-198806000-00007. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES