Abstract
Exposure of rats to hyperoxia or to treatment with endotoxin, increases lung manganese superoxide dismutase (MnSOD) gene expression. However, the paths by which these environmental signals are transduced into enhanced MnSOD gene expression are unknown. We now provide evidence that heterotrimeric G proteins are involved in the hyperoxia-induced increase in lung MnSOD gene expression but that pertussis toxin-sensitive G proteins are not involved in the endotoxin-induced elevation of lung MnSOD gene expression. We also show that treating rats with pertussis toxin decreased lung MnSOD activity approximately 50%. This decline in MnSOD activity occurred without a change in the lung activity of copper-zinc SOD, catalase, or glutathione peroxidase. In air-breathing rats, the pertussis toxin-induced decrease in MnSOD activity was associated with the development of lung edema, pleural effusion with a high concentration of protein, and biochemical evidence of lung oxygen toxicity. Compared to air-breathing rats, maintenance of pertussis toxin-treated rats under hypoxic or hyperoxic conditions respectively decreased or increased intrathoracic fluid. Endotoxin treatment elevated lung MnSOD activity and protected pertussis toxin-treated rats from an increase in intrathoracic fluid.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANDERSEN E. K. Studies on the occurrence of lung oedema in mice after intranasal H. pertussis inoculation. Acta Pathol Microbiol Scand. 1957;40(3):248–266. [PubMed] [Google Scholar]
- Adams J. D., Jr, Lauterburg B. H., Mitchell J. R. Plasma glutathione and glutathione disulfide in the rat: regulation and response to oxidative stress. J Pharmacol Exp Ther. 1983 Dec;227(3):749–754. [PubMed] [Google Scholar]
- Birnbaumer L. G proteins in signal transduction. Annu Rev Pharmacol Toxicol. 1990;30:675–705. doi: 10.1146/annurev.pa.30.040190.003331. [DOI] [PubMed] [Google Scholar]
- Bokoch G. M., Katada T., Northup J. K., Hewlett E. L., Gilman A. G. Identification of the predominant substrate for ADP-ribosylation by islet activating protein. J Biol Chem. 1983 Feb 25;258(4):2072–2075. [PubMed] [Google Scholar]
- Bomsel M., Mostov K. Role of heterotrimeric G proteins in membrane traffic. Mol Biol Cell. 1992 Dec;3(12):1317–1328. doi: 10.1091/mbc.3.12.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boveris A. Mitochondrial production of superoxide radical and hydrogen peroxide. Adv Exp Med Biol. 1977;78:67–82. doi: 10.1007/978-1-4615-9035-4_5. [DOI] [PubMed] [Google Scholar]
- Clerch L. B., Iqbal J., Massaro D. Perinatal rat lung catalase gene expression: influence of corticosteroid and hyperoxia. Am J Physiol. 1991 Jun;260(6 Pt 1):L428–L433. doi: 10.1152/ajplung.1991.260.6.L428. [DOI] [PubMed] [Google Scholar]
- Clerch L. B., Massaro D. Rat lung antioxidant enzymes: differences in perinatal gene expression and regulation. Am J Physiol. 1992 Oct;263(4 Pt 1):L466–L470. doi: 10.1152/ajplung.1992.263.4.L466. [DOI] [PubMed] [Google Scholar]
- Clerch L. B., Massaro D. Tolerance of rats to hyperoxia. Lung antioxidant enzyme gene expression. J Clin Invest. 1993 Feb;91(2):499–508. doi: 10.1172/JCI116228. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Costa L. E., Llesuy S., Boveris A. Active oxygen species in the liver of rats submitted to chronic hypobaric hypoxia. Am J Physiol. 1993 Jun;264(6 Pt 1):C1395–C1400. doi: 10.1152/ajpcell.1993.264.6.C1395. [DOI] [PubMed] [Google Scholar]
- Crapo J. D., Tierney D. F. Superoxide dismutase and pulmonary oxygen toxicity. Am J Physiol. 1974 Jun;226(6):1401–1407. doi: 10.1152/ajplegacy.1974.226.6.1401. [DOI] [PubMed] [Google Scholar]
- Damerau W., Ibel J., Thürich T., Assadnazari H., Zimmer G. Generation of free radicals in Langendorff and working hearts during normoxia, hypoxia, and reoxygenation. Basic Res Cardiol. 1993 Mar-Apr;88(2):141–149. doi: 10.1007/BF00798262. [DOI] [PubMed] [Google Scholar]
- De Duve C., Baudhuin P. Peroxisomes (microbodies and related particles). Physiol Rev. 1966 Apr;46(2):323–357. doi: 10.1152/physrev.1966.46.2.323. [DOI] [PubMed] [Google Scholar]
- Deisseroth A., Dounce A. L. Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role. Physiol Rev. 1970 Jul;50(3):319–375. doi: 10.1152/physrev.1970.50.3.319. [DOI] [PubMed] [Google Scholar]
- Durnam D. M., Palmiter R. D. A practical approach for quantitating specific mRNAs by solution hybridization. Anal Biochem. 1983 Jun;131(2):385–393. doi: 10.1016/0003-2697(83)90188-4. [DOI] [PubMed] [Google Scholar]
- Fisher A. B., Diamond S., Mellen S. Effect of O2 exposure on metabolism of the rabbit alveolar macrophage. J Appl Physiol. 1974 Sep;37(3):341–345. doi: 10.1152/jappl.1974.37.3.341. [DOI] [PubMed] [Google Scholar]
- Flohé L., Schlegel W. Glutathion-Peroxidase. IV. Intrazelluläre Verteilung des Glutathion-Peroxidase-Systems in der Rattenleber. Hoppe Seylers Z Physiol Chem. 1971 Oct;352(10):1401–1410. [PubMed] [Google Scholar]
- Frank L., Summerville J., Massaro D. Potection from oxygen toxicity with endotoxin. Role of the endogenous antioxidant enzymes of the lung. J Clin Invest. 1980 May;65(5):1104–1110. doi: 10.1172/JCI109763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fridovich I. The biology of oxygen radicals. Science. 1978 Sep 8;201(4359):875–880. doi: 10.1126/science.210504. [DOI] [PubMed] [Google Scholar]
- Gail D. B., Massaro D. Oxygen consumption by rat lung after in vivo hyperoxia. Am Rev Respir Dis. 1976 Jun;113(6):889–892. doi: 10.1164/arrd.1976.113.6.889. [DOI] [PubMed] [Google Scholar]
- Hass M. A., Iqbal J., Clerch L. B., Frank L., Massaro D. Rat lung Cu,Zn superoxide dismutase. Isolation and sequence of a full-length cDNA and studies of enzyme induction. J Clin Invest. 1989 Apr;83(4):1241–1246. doi: 10.1172/JCI114007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ischiropoulos H., Nadziejko C. E., Kumae T., Kikkawa Y. Oxygen tolerance in neonatal rats: role of subcellular superoxide generation. Am J Physiol. 1989 Dec;257(6 Pt 1):L411–L420. doi: 10.1152/ajplung.1989.257.6.L411. [DOI] [PubMed] [Google Scholar]
- Katada T., Ui M. ADP ribosylation of the specific membrane protein of C6 cells by islet-activating protein associated with modification of adenylate cyclase activity. J Biol Chem. 1982 Jun 25;257(12):7210–7216. [PubMed] [Google Scholar]
- Katada T., Ui M. Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc Natl Acad Sci U S A. 1982 May;79(10):3129–3133. doi: 10.1073/pnas.79.10.3129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine R. L., Garland D., Oliver C. N., Amici A., Climent I., Lenz A. G., Ahn B. W., Shaltiel S., Stadtman E. R. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464–478. doi: 10.1016/0076-6879(90)86141-h. [DOI] [PubMed] [Google Scholar]
- Luftig R. B., Conscience J. F., Skoultchi A., McMillan P., Revel M., Ruddle F. H. Effect of interferon on dimethyl sulfoxide-stimulated Friend erythroleukemic cells: ultrastructural and biochemical study. J Virol. 1977 Sep;23(3):799–810. doi: 10.1128/jvi.23.3.799-810.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Massaro G. D., Massaro D. Granular pneumocytes. Electron microscopic radioautographic evidence of intracellular protein transport. Am Rev Respir Dis. 1972 Jun;105(6):927–931. doi: 10.1164/arrd.1972.105.6.927. [DOI] [PubMed] [Google Scholar]
- Massaro G. D., McCoy L., Massaro D. Development of bronchiolar epithelium: time course of response to oxygen and recovery. Am J Physiol. 1988 May;254(5 Pt 2):R755–R760. doi: 10.1152/ajpregu.1988.254.5.R755. [DOI] [PubMed] [Google Scholar]
- McCord J. M., Keele B. B., Jr, Fridovich I. An enzyme-based theory of obligate anaerobiosis: the physiological function of superoxide dismutase. Proc Natl Acad Sci U S A. 1971 May;68(5):1024–1027. doi: 10.1073/pnas.68.5.1024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Connell M. J., Snape S. D., Nunn J. F. An early marker of hyperoxic lung injury in the rat and its pharmacological modulation. Br J Anaesth. 1991 Jun;66(6):697–702. doi: 10.1093/bja/66.6.697. [DOI] [PubMed] [Google Scholar]
- Olafsdottir K., Reed D. J. Retention of oxidized glutathione by isolated rat liver mitochondria during hydroperoxide treatment. Biochim Biophys Acta. 1988 Mar 17;964(3):377–382. doi: 10.1016/0304-4165(88)90038-4. [DOI] [PubMed] [Google Scholar]
- Prpić V., Green K. C., Blackmore P. F., Exton J. H. Vasopressin-, angiotensin II-, and alpha 1-adrenergic-induced inhibition of Ca2+ transport by rat liver plasma membrane vesicles. J Biol Chem. 1984 Feb 10;259(3):1382–1385. [PubMed] [Google Scholar]
- ROWEN M., MOOS W. S., SAMTER M. Increase radiation sensitivity of pertussis vaccinated mice. Proc Soc Exp Biol Med. 1955 Apr;88(4):548–550. doi: 10.3181/00379727-88-21647. [DOI] [PubMed] [Google Scholar]
- St Clair D. K., Wan X. S., Oberley T. D., Muse K. E., St Clair W. H. Suppression of radiation-induced neoplastic transformation by overexpression of mitochondrial superoxide dismutase. Mol Carcinog. 1992;6(4):238–242. doi: 10.1002/mc.2940060404. [DOI] [PubMed] [Google Scholar]
- Tartaglia L. A., Weber R. F., Figari I. S., Reynolds C., Palladino M. A., Jr, Goeddel D. V. The two different receptors for tumor necrosis factor mediate distinct cellular responses. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9292–9296. doi: 10.1073/pnas.88.20.9292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tohkin M., Yagami T., Katada T., Matsubara T. Possible interaction of alpha 1-adrenergic receptor with pertussis-toxin-sensitive guanine-nucleotide-binding regulatory proteins (G proteins) responsible for phospholipase C activation in rat liver plasma membranes. Eur J Biochem. 1990 Nov 26;194(1):81–87. doi: 10.1111/j.1432-1033.1990.tb19430.x. [DOI] [PubMed] [Google Scholar]
- Touati D. The molecular genetics of superoxide dismutase in E. coli. An approach to understanding the biological role and regulation of SODS in relation to other elements of the defence system against oxygen toxicity. Free Radic Res Commun. 1989;8(1):1–9. doi: 10.3109/10715768909087967. [DOI] [PubMed] [Google Scholar]
- Tsan M. F., White J. E., Treanor C., Shaffer J. B. Molecular basis for tumor necrosis factor-induced increase in pulmonary superoxide dismutase activities. Am J Physiol. 1990 Dec;259(6 Pt 1):L506–L512. doi: 10.1152/ajplung.1990.259.6.L506. [DOI] [PubMed] [Google Scholar]
- Visner G. A., Dougall W. C., Wilson J. M., Burr I. A., Nick H. S. Regulation of manganese superoxide dismutase by lipopolysaccharide, interleukin-1, and tumor necrosis factor. Role in the acute inflammatory response. J Biol Chem. 1990 Feb 15;265(5):2856–2864. [PubMed] [Google Scholar]
- Weisiger R. A., Fridovich I. Mitochondrial superoxide simutase. Site of synthesis and intramitochondrial localization. J Biol Chem. 1973 Jul 10;248(13):4793–4796. [PubMed] [Google Scholar]
- Wispé J. R., Warner B. B., Clark J. C., Dey C. R., Neuman J., Glasser S. W., Crapo J. D., Chang L. Y., Whitsett J. A. Human Mn-superoxide dismutase in pulmonary epithelial cells of transgenic mice confers protection from oxygen injury. J Biol Chem. 1992 Nov 25;267(33):23937–23941. [PubMed] [Google Scholar]
- van der Voorn L., Tol O., Hengeveld T. M., Ploegh H. L. Structural and functional studies on the G(o) protein. J Biol Chem. 1993 Mar 5;268(7):5131–5138. [PubMed] [Google Scholar]





