Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1994 Jun;93(6):2497–2504. doi: 10.1172/JCI117259

Inhibition of human factor VIIIa by anti-A2 subunit antibodies.

P Lollar 1, E T Parker 1, J E Curtis 1, S L Helgerson 1, L W Hoyer 1, M E Scott 1, D Scandella 1
PMCID: PMC294465  PMID: 8200986

Abstract

Human inhibitory alloantibodies and autoantibodies to Factor VIII (FVIII) are usually directed toward the A2 and/or C2 domains of the FVIII molecule. Anti-C2 antibodies block the binding of FVIII to phospholipid, but the mechanism of action of anti-A2 antibodies is not known. We investigated the properties of a patient autoantibody, RC, and a monoclonal antibody, 413, that bind to the region which contains the epitopes of all anti-A2 alloantibodies or autoantibodies studied to date. mAb 413 and RC were noncompetitive inhibitors of a model intrinsic Factor X activation complex (intrinsic FXase) consisting of Factor IXa, activated FVIII (FVIIIa), and synthetic phospholipid vesicles, since they decreased the Vmax of intrinsic FXase by > 95% at saturating concentrations without altering the Km. This indicates that RC and mAb 413 either block the binding of FVIIIa to FIXa or phospholipid or interfere with the catalytic function of fully assembled intrinsic FXase, but they do not inhibit the binding of the substrate Factor X. mAb 413 did not inhibit the increase in fluorescence anisotropy that results from the binding of Factor VIIIa to fluorescein-5-maleimidyl-D-phenylalanyl-prolyl-arginyl-FIXa (Fl-M-FPR-FIXa) on phospholipid vesicles in the absence of Factor X, indicating it does not inhibit assembly of intrinsic FXase. Addition of Factor X to Fl-M-FPR-FIXa, FVIIIa, and phospholipid vesicles produced a further increase in fluorescence anisotropy and a decrease in fluorescence intensity. This effect was blocked completely by mAb 413. We conclude that anti-A2 antibodies inhibit FVIIIa function by blocking the conversion of intrinsic FXase/FX complex to the transition state, rather than by interfering with formation of the ground state Michaelis complex.

Full text

PDF
2497

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai M., Scandella D., Hoyer L. W. Molecular basis of factor VIII inhibition by human antibodies. Antibodies that bind to the factor VIII light chain prevent the interaction of factor VIII with phospholipid. J Clin Invest. 1989 Jun;83(6):1978–1984. doi: 10.1172/JCI114107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barenholz Y., Gibbes D., Litman B. J., Goll J., Thompson T. E., Carlson R. D. A simple method for the preparation of homogeneous phospholipid vesicles. Biochemistry. 1977 Jun 14;16(12):2806–2810. doi: 10.1021/bi00631a035. [DOI] [PubMed] [Google Scholar]
  3. Curtis J. E., Helgerson S. L., Parker E. T., Lollar P. Isolation and characterization of thrombin-activated human factor VIII. J Biol Chem. 1994 Feb 25;269(8):6246–6251. [PubMed] [Google Scholar]
  4. Drapier J. C., Tenu J. P., Lemaire G., Petit J. F. Regulation of plasminogen activator secretion in mouse peritoneal macrophages. I. - Role of serum studied by a new spectrophotometric assay for plasminogen activators. Biochimie. 1979;61(4):463–471. doi: 10.1016/s0300-9084(79)80202-3. [DOI] [PubMed] [Google Scholar]
  5. Duffy E. J., Lollar P. Intrinsic pathway activation of factor X and its activation peptide-deficient derivative, factor Xdes-143-191. J Biol Chem. 1992 Apr 15;267(11):7821–7827. [PubMed] [Google Scholar]
  6. Duffy E. J., Parker E. T., Mutucumarana V. P., Johnson A. E., Lollar P. Binding of factor VIIIa and factor VIII to factor IXa on phospholipid vesicles. J Biol Chem. 1992 Aug 25;267(24):17006–17011. [PubMed] [Google Scholar]
  7. Ey P. L., Prowse S. J., Jenkin C. R. Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose. Immunochemistry. 1978 Jul;15(7):429–436. doi: 10.1016/0161-5890(78)90070-6. [DOI] [PubMed] [Google Scholar]
  8. Fay P. J., Haidaris P. J., Smudzin T. M. Human factor VIIIa subunit structure. Reconstruction of factor VIIIa from the isolated A1/A3-C1-C2 dimer and A2 subunit. J Biol Chem. 1991 May 15;266(14):8957–8962. [PubMed] [Google Scholar]
  9. Foster P. A., Fulcher C. A., Houghten R. A., Zimmerman T. S. Synthetic factor VIII peptides with amino acid sequences contained within the C2 domain of factor VIII inhibit factor VIII binding to phosphatidylserine. Blood. 1990 May 15;75(10):1999–2004. [PubMed] [Google Scholar]
  10. Foster P. A., Fulcher C. A., Houghten R. A., de Graaf Mahoney S., Zimmerman T. S. Localization of the binding regions of a murine monoclonal anti-factor VIII antibody and a human anti-factor VIII alloantibody, both of which inhibit factor VIII procoagulant activity, to amino acid residues threonine351-serine365 of the factor VIII heavy chain. J Clin Invest. 1988 Jul;82(1):123–128. doi: 10.1172/JCI113559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fulcher C. A., de Graaf Mahoney S., Roberts J. R., Kasper C. K., Zimmerman T. S. Localization of human factor FVIII inhibitor epitopes to two polypeptide fragments. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7728–7732. doi: 10.1073/pnas.82.22.7728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hemker H. C., Kahn M. J. Reaction sequence of blood coagulation. Nature. 1967 Sep 9;215(5106):1201–1202. doi: 10.1038/2151201a0. [DOI] [PubMed] [Google Scholar]
  13. Jenny R. J., Pittman D. D., Toole J. J., Kriz R. W., Aldape R. A., Hewick R. M., Kaufman R. J., Mann K. G. Complete cDNA and derived amino acid sequence of human factor V. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4846–4850. doi: 10.1073/pnas.84.14.4846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kane W. H., Davie E. W. Blood coagulation factors V and VIII: structural and functional similarities and their relationship to hemorrhagic and thrombotic disorders. Blood. 1988 Mar;71(3):539–555. [PubMed] [Google Scholar]
  15. Klotz I. M. Free energy diagrams and concentration profiles for enzyme-catalyzed reactions. J Chem Educ. 1976 Mar;53(3):159–160. doi: 10.1021/ed053p159. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Letter: A more uniform measurement of factor VIII inhibitors. Thromb Diath Haemorrh. 1975 Dec 15;34(3):869–872. [PubMed] [Google Scholar]
  18. Lollar P., Knutson G. J., Fass D. N. Stabilization of thrombin-activated porcine factor VIII:C by factor IXa phospholipid. Blood. 1984 Jun;63(6):1303–1308. [PubMed] [Google Scholar]
  19. Lollar P., Parker C. G. Subunit structure of thrombin-activated porcine factor VIII. Biochemistry. 1989 Jan 24;28(2):666–674. doi: 10.1021/bi00428a038. [DOI] [PubMed] [Google Scholar]
  20. Lollar P., Parker C. G. pH-dependent denaturation of thrombin-activated porcine factor VIII. J Biol Chem. 1990 Jan 25;265(3):1688–1692. [PubMed] [Google Scholar]
  21. Lollar P., Parker E. T. Structural basis for the decreased procoagulant activity of human factor VIII compared to the porcine homolog. J Biol Chem. 1991 Jul 5;266(19):12481–12486. [PubMed] [Google Scholar]
  22. Lubahn B. C., Ware J., Stafford D. W., Reisner H. M. Identification of a F.VIII epitope recognized by a human hemophilic inhibitor. Blood. 1989 Feb;73(2):497–499. [PubMed] [Google Scholar]
  23. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  24. Mutucumarana V. P., Duffy E. J., Lollar P., Johnson A. E. The active site of factor IXa is located far above the membrane surface and its conformation is altered upon association with factor VIIIa. A fluorescence study. J Biol Chem. 1992 Aug 25;267(24):17012–17021. [PubMed] [Google Scholar]
  25. Ortel T. L., Devore-Carter D., Quinn-Allen M., Kane W. H. Deletion analysis of recombinant human factor V. Evidence for a phosphatidylserine binding site in the second C-type domain. J Biol Chem. 1992 Feb 25;267(6):4189–4198. [PubMed] [Google Scholar]
  26. Scandella D., DeGraaf Mahoney S., Mattingly M., Roeder D., Timmons L., Fulcher C. A. Epitope mapping of human factor VIII inhibitor antibodies by deletion analysis of factor VIII fragments expressed in Escherichia coli. Proc Natl Acad Sci U S A. 1988 Aug;85(16):6152–6156. doi: 10.1073/pnas.85.16.6152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Scandella D., Mattingly M., Prescott R. A recombinant factor VIII A2 domain polypeptide quantitatively neutralizes human inhibitor antibodies that bind to A2. Blood. 1993 Sep 15;82(6):1767–1775. [PubMed] [Google Scholar]
  28. Scandella D., Mattingly M., de Graaf S., Fulcher C. A. Localization of epitopes for human factor VIII inhibitor antibodies by immunoblotting and antibody neutralization. Blood. 1989 Oct;74(5):1618–1626. [PubMed] [Google Scholar]
  29. Scandella D., Timmons L., Mattingly M., Trabold N., Hoyer L. W. A soluble recombinant factor VIII fragment containing the A2 domain binds to some human anti-factor VIII antibodies that are not detected by immunoblotting. Thromb Haemost. 1992 Jun 1;67(6):665–671. [PubMed] [Google Scholar]
  30. Vehar G. A., Keyt B., Eaton D., Rodriguez H., O'Brien D. P., Rotblat F., Oppermann H., Keck R., Wood W. I., Harkins R. N. Structure of human factor VIII. Nature. 1984 Nov 22;312(5992):337–342. doi: 10.1038/312337a0. [DOI] [PubMed] [Google Scholar]
  31. Ware J., MacDonald M. J., Lo M., de Graaf S., Fulcher C. A. Epitope mapping of human factor VIII inhibitor antibodies by site-directed mutagenesis of a factor VIII polypeptide. Blood Coagul Fibrinolysis. 1992 Dec;3(6):703–716. doi: 10.1097/00001721-199212000-00002. [DOI] [PubMed] [Google Scholar]
  32. van Dieijen G., Tans G., Rosing J., Hemker H. C. The role of phospholipid and factor VIIIa in the activation of bovine factor X. J Biol Chem. 1981 Apr 10;256(7):3433–3442. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES