Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Sep;143(3):1200–1207. doi: 10.1128/jb.143.3.1200-1207.1980

Membrane composition and virus susceptibility of Acholeplasma laidlawii.

L E Steinick, A Wieslander, K E Johansson, A Liss
PMCID: PMC294478  PMID: 7410317

Abstract

The membrane composition of 11 strains of Acholeplasma laidlawii, including three strains persistently infected with mycoplasmaviruses MVL51, MVL2, and MVL3, was studied and correlated with mycoplasmavirus sensitivity. Membranes of the strains had similiar sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns, and all strains were inhibited by an antiserum produced against membranes from one of the strains. The amounts of integral membrane proteins solubilized by the nonionic detergent Tween 20 differed considerably. Therefore, characteristic crossed immunoelectrophoresis patterns were obtained for each strain. Strains persistently infected with MVL2 and MVL3 were notably different from the noninfected host. The ability to propagate any of the viruses was not correlated with sodium dodecyl sulfate-polyacrylamide gel electrophoresis or crossed immunoelectrophoresis patterns. The persistently infected strains had a characteristic lipid composition. MVL51-resistant strains, including a resistant clone selected from a sensitive strain, were characterized by a large monoglucosyldiglyceride/diglucosyldiglyceride ratio and trace amounts of diphosphatidylglyceol (as opposed to the sensitive strains). Differences in lipid composition in A. laidlawii seem to affect the relationship between cells and viruses.

Full text

PDF
1200

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archer D. B., Rodwell A. W., Rodwell E. S. The nature and location of Acholeplasma laidlawii membrane proteins investigated by two-dimensional gel electrophoresis. Biochim Biophys Acta. 1978 Nov 2;513(2):268–283. doi: 10.1016/0005-2736(78)90179-7. [DOI] [PubMed] [Google Scholar]
  2. Axelsen N. H. Intermediate gel in crossed and in fused rocket immunoelectrophoresis. Scand J Immunol Suppl. 1973;1:71–77. doi: 10.1111/j.1365-3083.1973.tb03782.x. [DOI] [PubMed] [Google Scholar]
  3. Chamberlain B. K., Webster R. E. Lipid-protein interactions in Escherichia coli. Membrane-associated f1 bacteriophage coat protein and phospholipid metabolism. J Biol Chem. 1976 Dec 25;251(24):7739–7745. [PubMed] [Google Scholar]
  4. Christiansson A., Wieslander A. Control of membrane polar lipid composition in Acholeplasma laidlawii a by the extent of saturated fatty acid synthesis. Biochim Biophys Acta. 1980 Jan 25;595(2):189–199. doi: 10.1016/0005-2736(80)90083-8. [DOI] [PubMed] [Google Scholar]
  5. Christiansson A., Wieslander A. Membrane lipid metabolism in Acholeplasma laidlawii A EF 22. Influence of cholesterol and temperature shift-down on incorporation of fatty acids and synthesis of membrane lipid species. Eur J Biochem. 1978 Apr;85(1):65–76. doi: 10.1111/j.1432-1033.1978.tb12212.x. [DOI] [PubMed] [Google Scholar]
  6. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  7. Demel R. A., De Kruyff B. The function of sterols in membranes. Biochim Biophys Acta. 1976 Oct 26;457(2):109–132. doi: 10.1016/0304-4157(76)90008-3. [DOI] [PubMed] [Google Scholar]
  8. Ennis H. L., Kievitt K. D. Alteration of the Escherichia coli membrane by addition of bacteriophage T4 protein synthesized after infection. J Virol. 1977 May;22(2):553–560. doi: 10.1128/jvi.22.2.553-560.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gennis R. B. Protein-lipid interactions. Annu Rev Biophys Bioeng. 1977;6:195–238. doi: 10.1146/annurev.bb.06.060177.001211. [DOI] [PubMed] [Google Scholar]
  10. Gourlay R. N. Mycoplasma viruses: isolation, physicochemical, and biological properties. CRC Crit Rev Microbiol. 1974;3(3):315–331. doi: 10.3109/10408417409108754. [DOI] [PubMed] [Google Scholar]
  11. Harboe N., Ingild A. Immunization, isolation of immunoglobulins, estimation of antibody titre. Scand J Immunol Suppl. 1973;1:161–164. doi: 10.1111/j.1365-3083.1973.tb03798.x. [DOI] [PubMed] [Google Scholar]
  12. Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
  13. Helenius A., Simons K. Solubilization of membranes by detergents. Biochim Biophys Acta. 1975 Mar 25;415(1):29–79. doi: 10.1016/0304-4157(75)90016-7. [DOI] [PubMed] [Google Scholar]
  14. Hjertén S., Johansson K. E. Selective solubilization with Tween 20 of membrane proteins from Acholeplasma laidlawaii. Biochim Biophys Acta. 1972 Nov 2;288(2):312–325. doi: 10.1016/0005-2736(72)90252-0. [DOI] [PubMed] [Google Scholar]
  15. Johansson K. E., Blomqvist I., Hjertén S. Purification of membrane proteins from Acholeplasma laidlawii by agarose suspension electrophoresis in Tween 20 and polyacrylamide and dextran gel electrophoresis in detergent-free media. J Biol Chem. 1975 Apr 10;250(7):2463–2469. [PubMed] [Google Scholar]
  16. Johansson K. E., Hjertén S. Localization of the Tween 20-soluble membrane proteins of Acholeplasma laidlawii by crossed immunoelectrophoresis. J Mol Biol. 1974 Jun 25;86(2):341–348. doi: 10.1016/0022-2836(74)90023-0. [DOI] [PubMed] [Google Scholar]
  17. Kroll J. Line immunoelectrophoresis. Scand J Immunol Suppl. 1973;1:61–67. [PubMed] [Google Scholar]
  18. LAURELL C. B. ANTIGEN-ANTIBODY CROSSED ELECTROPHORESIS. Anal Biochem. 1965 Feb;10:358–361. doi: 10.1016/0003-2697(65)90278-2. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Liss A. Acholeplasma laidlawii infection by group 3 mycoplasmavirus. Virology. 1977 Mar;77(1):433–436. doi: 10.1016/0042-6822(77)90443-3. [DOI] [PubMed] [Google Scholar]
  21. Liss A., Maniloff J. Infection of Acholeplasma laidlawii by MVL51 virus. Virology. 1973 Sep;55(1):118–126. doi: 10.1016/s0042-6822(73)81013-x. [DOI] [PubMed] [Google Scholar]
  22. Maniloff J., Das J., Christensen J. R. Viruses of mycoplasmas and spiroplasmas. Adv Virus Res. 1977;21:343–380. doi: 10.1016/s0065-3527(08)60765-4. [DOI] [PubMed] [Google Scholar]
  23. Marvin D. A., Wachtel E. J. Structure and assembly of filamentous bacterial viruses. Nature. 1975 Jan 3;253(5486):19–23. doi: 10.1038/253019a0. [DOI] [PubMed] [Google Scholar]
  24. McElhaney R. N. The effect of alterations in the physical state of the membrane lipids on the ability of Acholeplasma laidlawii B to grow at various temperatures. J Mol Biol. 1974 Mar 25;84(1):145–157. doi: 10.1016/0022-2836(74)90218-6. [DOI] [PubMed] [Google Scholar]
  25. ORNSTEIN L. DISC ELECTROPHORESIS. I. BACKGROUND AND THEORY. Ann N Y Acad Sci. 1964 Dec 28;121:321–349. doi: 10.1111/j.1749-6632.1964.tb14207.x. [DOI] [PubMed] [Google Scholar]
  26. Onishi Y. "Phospholipids of virus-induced membranes in cytoplasm of Escherichia coli. J Bacteriol. 1971 Sep;107(3):918–925. doi: 10.1128/jb.107.3.918-925.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Owen P., Kaback H. R. Molecular structure of membrane vesicles from Escherichia coli. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3148–3152. doi: 10.1073/pnas.75.7.3148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Owen P., Salton M. R. Antigenic and enzymatic architecture of Micrococcus lysodeikticus membranes established by crossed immunoelectrophoresis. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3711–3715. doi: 10.1073/pnas.72.9.3711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pluschke G., Hirota Y., Overath P. Function of phospholipids in Escherichia coli. Characterization of a mutant deficient in cardiolipin synthesis. J Biol Chem. 1978 Jul 25;253(14):5048–5055. [PubMed] [Google Scholar]
  30. Putzrath R. M., Maniloff J. Growth of an enveloped mycoplasmavirus and establishment of a carrier state. J Virol. 1977 May;22(2):308–314. doi: 10.1128/jvi.22.2.308-314.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Putzrath R. M., Maniloff J. Properties of a persistent viral infection: possible lysogeny by an enveloped nonlytic mycoplasmavirus. J Virol. 1978 Oct;28(1):254–261. doi: 10.1128/jvi.28.1.254-261.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Raetz C. R. Enzymology, genetics, and regulation of membrane phospholipid synthesis in Escherichia coli. Microbiol Rev. 1978 Sep;42(3):614–659. doi: 10.1128/mr.42.3.614-659.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Smilowitz H., Carson J., Robbins P. W. Association of newly synthesized major f1 coat protein with infected host cell inner membrane. J Supramol Struct. 1972;1(1):8–18. doi: 10.1002/jss.400010103. [DOI] [PubMed] [Google Scholar]
  34. Watson D. H., Wildy P. The preparation of 'monoprecipitin' antisera to herpes virus specific antigens. J Gen Virol. 1969 Mar;4(2):163–168. doi: 10.1099/0022-1317-4-2-163. [DOI] [PubMed] [Google Scholar]
  35. Wickner W. T. Role of hydrophobic forces in membrane protein asymmetry. Biochemistry. 1977 Jan 25;16(2):254–258. doi: 10.1021/bi00621a015. [DOI] [PubMed] [Google Scholar]
  36. Wieslander A., Rilfors L. Qualitative and quantitative variations of membrane lipid species in Acholeplasma laidlawii A. Biochim Biophys Acta. 1977 Apr 18;466(2):336–346. doi: 10.1016/0005-2736(77)90229-2. [DOI] [PubMed] [Google Scholar]
  37. Wieslander A., Ulmius J., Lindblom G., Fontell K. Water binding and phase structures for different Acholeplasma laidlawii membrane lipids studied by deuteron nuclear magnetic resonance and x-ray diffraction. Biochim Biophys Acta. 1978 Sep 22;512(2):241–253. doi: 10.1016/0005-2736(78)90250-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES