Abstract
Uninephrectomized rats drinking 1% sodium chloride were given aldosterone (Aldo, 0.75 microgram/h, subcutaneous [s.c.] infusion), deoxycorticosterone (DOC, 20 mg/wk, s.c.), corticosterone (B, 2 mg/d, s.c.), or the antiglucocorticoid-antiprogestin RU486 (2 mg/d, s.c.) for 8 wk, and hemodynamic and tissue responses were compared with a non-steroid-treated control group. Aldo and DOC markedly increased systolic BP and caused considerable (40-50%) cardiac hypertrophy; B and RU486 caused neither hypertension nor cardiac hypertrophy. Measurements of ventricular cross-sectional areas showed hypertrophy due to an increase in mass of the left ventricle only. Cardiac hydroxyproline concentration was increased considerably by Aldo and DOC, to a lesser degree by RU486, and not by B. Aldo markedly elevated left ventricular interstitial collagen (2.5-fold vs control, P < 0.01 vs all groups); other steroid treatments also increased interstitial collagen over control (DOC x 1.8-, RU486 x 1.6-, B x 1.3-fold), with identical responses for right and left ventricles (r = 0.94). A different pattern of perivascular fibrosis was noted; DOC elevated perivascular collagen (2.1-fold vs control, P < 0.01 vs all other groups); RU486 raised levels 1.4-fold vs control, but neither Aldo nor B significantly affected perivascular collagen. These data are consistent with interstitial cardiac fibrosis reflecting type I (mineralocorticoid) receptor occupancy by administered Aldo or DOC, or by elevated endogenous B after type II (glucocorticoid) receptor blockade after RU486 administration; perivascular fibrosis may reflect a composite response after type I receptor agonist/type II glucocorticoid receptor antagonist occupancy.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arriza J. L., Weinberger C., Cerelli G., Glaser T. M., Handelin B. L., Housman D. E., Evans R. M. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science. 1987 Jul 17;237(4812):268–275. doi: 10.1126/science.3037703. [DOI] [PubMed] [Google Scholar]
- Brilla C. G., Matsubara L. S., Weber K. T. Anti-aldosterone treatment and the prevention of myocardial fibrosis in primary and secondary hyperaldosteronism. J Mol Cell Cardiol. 1993 May;25(5):563–575. doi: 10.1006/jmcc.1993.1066. [DOI] [PubMed] [Google Scholar]
- Brilla C. G., Weber K. T. Mineralocorticoid excess, dietary sodium, and myocardial fibrosis. J Lab Clin Med. 1992 Dec;120(6):893–901. [PubMed] [Google Scholar]
- Chiariello M., Ambrosio G., Cappelli-Bigazzi M., Perrone-Filardi P., Brigante F., Sifola C. A biochemical method for the quantitation of myocardial scarring after experimental coronary artery occlusion. J Mol Cell Cardiol. 1986 Mar;18(3):283–290. doi: 10.1016/s0022-2828(86)80410-2. [DOI] [PubMed] [Google Scholar]
- Dolber P. C., Spach M. S. Picrosirius red staining of cardiac muscle following phosphomolybdic acid treatment. Stain Technol. 1987 Jan;62(1):23–26. doi: 10.3109/10520298709107961. [DOI] [PubMed] [Google Scholar]
- Edwards C. R., Stewart P. M., Burt D., Brett L., McIntyre M. A., Sutanto W. S., de Kloet E. R., Monder C. Localisation of 11 beta-hydroxysteroid dehydrogenase--tissue specific protector of the mineralocorticoid receptor. Lancet. 1988 Oct 29;2(8618):986–989. doi: 10.1016/s0140-6736(88)90742-8. [DOI] [PubMed] [Google Scholar]
- Funder J. W., Pearce P. T., Myles K., Roy L. P. Apparent mineralocorticoid excess, pseudohypoaldosteronism, and urinary electrolyte excretion: toward a redefinition of mineralocorticoid action. FASEB J. 1990 Nov;4(14):3234–3238. doi: 10.1096/fasebj.4.14.2172062. [DOI] [PubMed] [Google Scholar]
- Funder J. W., Pearce P. T., Smith R., Smith A. I. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science. 1988 Oct 28;242(4878):583–585. doi: 10.1126/science.2845584. [DOI] [PubMed] [Google Scholar]
- Gómez Sánchez E. P. What is the role of the central nervous system in mineralocorticoid hypertension? Am J Hypertens. 1991 Apr;4(4 Pt 1):374–381. doi: 10.1093/ajh/4.4.374. [DOI] [PubMed] [Google Scholar]
- Gómez-Sánchez E. P., Fort C. M., Gómez-Sánchez C. E. Intracerebroventricular infusion of RU28318 blocks aldosterone-salt hypertension. Am J Physiol. 1990 Mar;258(3 Pt 1):E482–E484. doi: 10.1152/ajpendo.1990.258.3.E482. [DOI] [PubMed] [Google Scholar]
- Gómez-Sánchez E. P., Venkataraman M. T., Thwaites D., Fort C. ICV infusion of corticosterone antagonizes ICV-aldosterone hypertension. Am J Physiol. 1990 Apr;258(4 Pt 1):E649–E653. doi: 10.1152/ajpendo.1990.258.4.E649. [DOI] [PubMed] [Google Scholar]
- Hierholzer K., Schöneshöfer M., Siebe H., Tsiakiras D., Weskamp P. Corticosteroid metabolism in isolated rat kidney in vitro. I. Formation of lipid soluble metabolites from corticosterone (B) in renal tissue from male rats. Pflugers Arch. 1984 Apr;400(4):363–371. doi: 10.1007/BF00587533. [DOI] [PubMed] [Google Scholar]
- Jonat C., Rahmsdorf H. J., Park K. K., Cato A. C., Gebel S., Ponta H., Herrlich P. Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell. 1990 Sep 21;62(6):1189–1204. doi: 10.1016/0092-8674(90)90395-u. [DOI] [PubMed] [Google Scholar]
- Krozowski Z. S., Funder J. W. Renal mineralocorticoid receptors and hippocampal corticosterone-binding species have identical intrinsic steroid specificity. Proc Natl Acad Sci U S A. 1983 Oct;80(19):6056–6060. doi: 10.1073/pnas.80.19.6056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ludbrook J. On making multiple comparisons in clinical and experimental pharmacology and physiology. Clin Exp Pharmacol Physiol. 1991 Jun;18(6):379–392. doi: 10.1111/j.1440-1681.1991.tb01468.x. [DOI] [PubMed] [Google Scholar]
- Marks R., Barlow J. W., Funder J. W. Steroid-induced vasoconstriction: glucocorticoid antagonist studies. J Clin Endocrinol Metab. 1982 May;54(5):1075–1077. doi: 10.1210/jcem-54-5-1075. [DOI] [PubMed] [Google Scholar]
- McEwen B. S., Lambdin L. T., Rainbow T. C., De Nicola A. F. Aldosterone effects on salt appetite in adrenalectomized rats. Neuroendocrinology. 1986;43(1):38–43. doi: 10.1159/000124506. [DOI] [PubMed] [Google Scholar]
- Mercer W. R., Krozowski Z. S. Localization of an 11 beta hydroxysteroid dehydrogenase activity to the distal nephron. Evidence for the existence of two species of dehydrogenase in the rat kidney. Endocrinology. 1992 Jan;130(1):540–543. doi: 10.1210/endo.130.1.1727721. [DOI] [PubMed] [Google Scholar]
- Müller A. E., Cruz-Orive L. M., Gehr P., Weibel E. R. Comparison of two subsampling methods for electron microscopic morphometry. J Microsc. 1981 Jul;123(Pt 1):35–49. doi: 10.1111/j.1365-2818.1981.tb01278.x. [DOI] [PubMed] [Google Scholar]
- Náray-Fejes-Tóth A., Fejes-Tóth G. Glucocorticoid receptors mediate mineralocorticoid-like effects in cultured collecting duct cells. Am J Physiol. 1990 Oct;259(4 Pt 2):F672–F678. doi: 10.1152/ajprenal.1990.259.4.F672. [DOI] [PubMed] [Google Scholar]
- Zaini A., Pearce P., Funder J. W. High-affinity aldosterone binding in rat liver--a re-evaluation. Clin Exp Pharmacol Physiol. 1987 Jan;14(1):39–45. doi: 10.1111/j.1440-1681.1987.tb00955.x. [DOI] [PubMed] [Google Scholar]
