Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1994 Jun;93(6):2623–2631. doi: 10.1172/JCI117275

Glucose-induced changes in Na+/H+ antiport activity and gene expression in cultured vascular smooth muscle cells. Role of protein kinase C.

B Williams 1, R L Howard 1
PMCID: PMC294501  PMID: 8201001

Abstract

Increased Na+/H+ antiport activity has been implicated in the pathogenesis of hypertension and vascular disease in diabetes mellitus. The independent effect of elevated extracellular glucose concentrations on Na+/H+ antiport activity in cultured rat vascular smooth muscle cells (VSMC) was thus examined. Amiloride-sensitive 22Na+ uptake by VSMC significantly increased twofold after 3 and 24 h of exposure to high glucose medium (20 mM) vs. control medium (5 mM). Direct glucose-induced Na+/H+ antiport activation was confirmed by measuring Na(+)-dependent intracellular pH recovery from intracellular acidosis. High glucose significantly increased protein kinase C (PKC) activity in VSMC and inhibition of PKC activation with H-7, staurosporine, or prior PKC downregulation prevented glucose-induced increases in Na+/H+ antiport activity in VSMC. Northern analysis of VSMC poly A+ RNA revealed that high glucose induced a threefold increase in Na+/H+ antiport (NHE-1) mRNA at 24 h. Inhibiting this increase in NHE-1 mRNA with actinomycin D prevented the sustained glucose-induced increase in Na+/H+ antiport activity. In conclusion, elevated glucose concentrations significantly influence vascular Na+/H+ antiport activity via glucose-induced PKC dependent mechanisms, thereby providing a biochemical basis for increased Na+/H+ antiport activity in the vascular tissues of patients with hypertension and diabetes mellitus.

Full text

PDF
2623

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiba T., Rocco V. K., Warnock D. G. Parallel adaptation of the rabbit renal cortical sodium/proton antiporter and sodium/bicarbonate cotransporter in metabolic acidosis and alkalosis. J Clin Invest. 1987 Aug;80(2):308–315. doi: 10.1172/JCI113074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aronson P. S., Nee J., Suhm M. A. Modifier role of internal H+ in activating the Na+-H+ exchanger in renal microvillus membrane vesicles. Nature. 1982 Sep 9;299(5879):161–163. doi: 10.1038/299161a0. [DOI] [PubMed] [Google Scholar]
  3. Aviv A., Livne A. The Na+/H+ antiport, cytosolic free Ca2+, and essential hypertension: a hypothesis. Am J Hypertens. 1988 Oct;1(4 Pt 1):410–413. doi: 10.1093/ajh/1.4.410. [DOI] [PubMed] [Google Scholar]
  4. Berk B. C., Aronow M. S., Brock T. A., Cragoe E., Jr, Gimbrone M. A., Jr, Alexander R. W. Angiotensin II-stimulated Na+/H+ exchange in cultured vascular smooth muscle cells. Evidence for protein kinase C-dependent and -independent pathways. J Biol Chem. 1987 Apr 15;262(11):5057–5064. [PubMed] [Google Scholar]
  5. Berk B. C., Vallega G., Muslin A. J., Gordon H. M., Canessa M., Alexander R. W. Spontaneously hypertensive rat vascular smooth muscle cells in culture exhibit increased growth and Na+/H+ exchange. J Clin Invest. 1989 Mar;83(3):822–829. doi: 10.1172/JCI113964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bloch R. D., Zikos D., Fisher K. A., Schleicher L., Oyama M., Cheng J. C., Skopicki H. A., Sukowski E. J., Cragoe E. J., Jr, Peterson D. R. Activation of proximal tubular Na(+)-H+ exchange by angiotensin II. Am J Physiol. 1992 Jul;263(1 Pt 2):F135–F143. doi: 10.1152/ajprenal.1992.263.1.F135. [DOI] [PubMed] [Google Scholar]
  7. Bobik A., Grooms A., Grinpukel S., Little P. J. The effects of alterations in membrane sodium transport on rat aortic smooth muscle proliferation. J Hypertens Suppl. 1988 Dec;6(4):S219–S221. doi: 10.1097/00004872-198812040-00065. [DOI] [PubMed] [Google Scholar]
  8. Canessa M. L., Morgan K., Semplicini A. Genetic differences in lithium-sodium exchange and regulation of the sodium-hydrogen exchanger in essential hypertension. J Cardiovasc Pharmacol. 1988;12 (Suppl 3):S92–S98. [PubMed] [Google Scholar]
  9. Canessa M., Adragna N., Solomon H. S., Connolly T. M., Tosteson D. C. Increased sodium-lithium countertransport in red cells of patients with essential hypertension. N Engl J Med. 1980 Apr 3;302(14):772–776. doi: 10.1056/NEJM198004033021403. [DOI] [PubMed] [Google Scholar]
  10. Cassel D., Zhuang Y. X., Glaser L. Vanadate stimulates Na+/H+ exchange activity in A431 cells. Biochem Biophys Res Commun. 1984 Jan 30;118(2):675–681. doi: 10.1016/0006-291x(84)91356-1. [DOI] [PubMed] [Google Scholar]
  11. Chaillet J. R., Boron W. F. Intracellular calibration of a pH-sensitive dye in isolated, perfused salamander proximal tubules. J Gen Physiol. 1985 Dec;86(6):765–794. doi: 10.1085/jgp.86.6.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chiu R., Imagawa M., Imbra R. J., Bockoven J. R., Karin M. Multiple cis- and trans-acting elements mediate the transcriptional response to phorbol esters. Nature. 1987 Oct 15;329(6140):648–651. doi: 10.1038/329648a0. [DOI] [PubMed] [Google Scholar]
  13. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  14. Comb M., Birnberg N. C., Seasholtz A., Herbert E., Goodman H. M. A cyclic AMP- and phorbol ester-inducible DNA element. 1986 Sep 25-Oct 1Nature. 323(6086):353–356. doi: 10.1038/323353a0. [DOI] [PubMed] [Google Scholar]
  15. Curran T., Franza B. R., Jr Fos and Jun: the AP-1 connection. Cell. 1988 Nov 4;55(3):395–397. doi: 10.1016/0092-8674(88)90024-4. [DOI] [PubMed] [Google Scholar]
  16. Davis R. J., Czech M. P. Tumor-promoting phorbol diesters cause the phosphorylation of epidermal growth factor receptors in normal human fibroblasts at threonine-654. Proc Natl Acad Sci U S A. 1985 Apr;82(7):1974–1978. doi: 10.1073/pnas.82.7.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Feig P. U., D'Occhio M. A., Boylan J. W. Lymphocyte membrane sodium-proton exchange in spontaneously hypertensive rats. Hypertension. 1987 Mar;9(3):282–288. doi: 10.1161/01.hyp.9.3.282. [DOI] [PubMed] [Google Scholar]
  18. Ferrannini E., Buzzigoli G., Bonadonna R., Giorico M. A., Oleggini M., Graziadei L., Pedrinelli R., Brandi L., Bevilacqua S. Insulin resistance in essential hypertension. N Engl J Med. 1987 Aug 6;317(6):350–357. doi: 10.1056/NEJM198708063170605. [DOI] [PubMed] [Google Scholar]
  19. Grinstein S., Cohen S., Goetz J. D., Rothstein A., Gelfand E. W. Characterization of the activation of Na+/H+ exchange in lymphocytes by phorbol esters: change in cytoplasmic pH dependence of the antiport. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1429–1433. doi: 10.1073/pnas.82.5.1429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Grinstein S., Cohen S., Rothstein A. Cytoplasmic pH regulation in thymic lymphocytes by an amiloride-sensitive Na+/H+ antiport. J Gen Physiol. 1984 Mar;83(3):341–369. doi: 10.1085/jgp.83.3.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Grinstein S., Goetz J. D., Rothstein A. 22Na+ fluxes in thymic lymphocytes. II. Amiloride-sensitive Na+/H+ exchange pathway; reversibility of transport and asymmetry of the modifier site. J Gen Physiol. 1984 Oct;84(4):585–600. doi: 10.1085/jgp.84.4.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Grinstein S., Rothstein A., Cohen S. Mechanism of osmotic activation of Na+/H+ exchange in rat thymic lymphocytes. J Gen Physiol. 1985 May;85(5):765–787. doi: 10.1085/jgp.85.5.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Grinstein S., Rothstein A. Mechanisms of regulation of the Na+/H+ exchanger. J Membr Biol. 1986;90(1):1–12. doi: 10.1007/BF01869680. [DOI] [PubMed] [Google Scholar]
  24. Grinstein S., Rotin D., Mason M. J. Na+/H+ exchange and growth factor-induced cytosolic pH changes. Role in cellular proliferation. Biochim Biophys Acta. 1989 Jan 18;988(1):73–97. doi: 10.1016/0304-4157(89)90004-x. [DOI] [PubMed] [Google Scholar]
  25. Harris R. C., Seifter J. L., Brenner B. M. Adaptation of Na+-H+ exchange in renal microvillus membrane vesicles. Role of dietary protein and uninephrectomy. J Clin Invest. 1984 Dec;74(6):1979–1987. doi: 10.1172/JCI111619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hasstedt S. J., Wu L. L., Ash K. O., Kuida H., Williams R. R. Hypertension and sodium-lithium countertransport in Utah pedigrees: evidence for major-locus inheritance. Am J Hum Genet. 1988 Jul;43(1):14–22. [PMC free article] [PubMed] [Google Scholar]
  27. Hatori N., Fine B. P., Nakamura A., Cragoe E., Jr, Aviv A. Angiotensin II effect on cytosolic pH in cultured rat vascular smooth muscle cells. J Biol Chem. 1987 Apr 15;262(11):5073–5078. [PubMed] [Google Scholar]
  28. Heasley L. E., Johnson G. L. Detection of nerve growth factor and epidermal growth factor-regulated protein kinases in PC12 cells with synthetic peptide substrates. Mol Pharmacol. 1989 Mar;35(3):331–338. [PubMed] [Google Scholar]
  29. Heasley L. E., Johnson G. L. Regulation of protein kinase C by nerve growth factor, epidermal growth factor, and phorbol esters in PC12 pheochromocytoma cells. J Biol Chem. 1989 May 25;264(15):8646–8652. [PubMed] [Google Scholar]
  30. Hidaka H., Inagaki M., Kawamoto S., Sasaki Y. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry. 1984 Oct 9;23(21):5036–5041. doi: 10.1021/bi00316a032. [DOI] [PubMed] [Google Scholar]
  31. Hilton P. J. Cellular sodium transport in essential hypertension. N Engl J Med. 1986 Jan 23;314(4):222–229. doi: 10.1056/NEJM198601233140407. [DOI] [PubMed] [Google Scholar]
  32. Horie S., Moe O., Miller R. T., Alpern R. J. Long-term activation of protein kinase c causes chronic Na/H antiporter stimulation in cultured proximal tubule cells. J Clin Invest. 1992 Feb;89(2):365–372. doi: 10.1172/JCI115594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Horie S., Moe O., Yamaji Y., Cano A., Miller R. T., Alpern R. J. Role of protein kinase C and transcription factor AP-1 in the acid-induced increase in Na/H antiporter activity. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5236–5240. doi: 10.1073/pnas.89.12.5236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Huang C. L., Cogan M. G., Cragoe E. J., Jr, Ives H. E. Thrombin activation of the Na+/H+ exchanger in vascular smooth muscle cells. Evidence for a kinase C-independent pathway which is Ca2+-dependent and pertussis toxin-sensitive. J Biol Chem. 1987 Oct 15;262(29):14134–14140. [PubMed] [Google Scholar]
  35. James D. E., Lederman L., Pilch P. F. Purification of insulin-dependent exocytic vesicles containing the glucose transporter. J Biol Chem. 1987 Aug 25;262(24):11817–11824. [PubMed] [Google Scholar]
  36. Krolewski A. S., Canessa M., Warram J. H., Laffel L. M., Christlieb A. R., Knowler W. C., Rand L. I. Predisposition to hypertension and susceptibility to renal disease in insulin-dependent diabetes mellitus. N Engl J Med. 1988 Jan 21;318(3):140–145. doi: 10.1056/NEJM198801213180303. [DOI] [PubMed] [Google Scholar]
  37. L'Allemain G., Paris S., Pouysségur J. Growth factor action and intracellular pH regulation in fibroblasts. Evidence for a major role of the Na+/H+ antiport. J Biol Chem. 1984 May 10;259(9):5809–5815. [PubMed] [Google Scholar]
  38. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  39. Little P. J., Cragoe E. J., Jr, Bobik A. Na-H exchange is a major pathway for Na influx in rat vascular smooth muscle. Am J Physiol. 1986 Nov;251(5 Pt 1):C707–C712. doi: 10.1152/ajpcell.1986.251.5.C707. [DOI] [PubMed] [Google Scholar]
  40. Livne A., Balfe J. W., Veitch R., Marquez-Julio A., Grinstein S., Rothstein A. Increased platelet Na+-H+ exchange rates in essential hypertension: application of a novel test. Lancet. 1987 Mar 7;1(8532):533–536. doi: 10.1016/s0140-6736(87)90176-0. [DOI] [PubMed] [Google Scholar]
  41. Mahnensmith R. L., Aronson P. S. The plasma membrane sodium-hydrogen exchanger and its role in physiological and pathophysiological processes. Circ Res. 1985 Jun;56(6):773–788. doi: 10.1161/01.res.56.6.773. [DOI] [PubMed] [Google Scholar]
  42. Mangili R., Bending J. J., Scott G., Li L. K., Gupta A., Viberti G. Increased sodium-lithium countertransport activity in red cells of patients with insulin-dependent diabetes and nephropathy. N Engl J Med. 1988 Jan 21;318(3):146–150. doi: 10.1056/NEJM198801213180304. [DOI] [PubMed] [Google Scholar]
  43. Matsumoto H., Sasaki Y. Staurosporine, a protein kinase C inhibitor interferes with proliferation of arterial smooth muscle cells. Biochem Biophys Res Commun. 1989 Jan 16;158(1):105–109. doi: 10.1016/s0006-291x(89)80183-4. [DOI] [PubMed] [Google Scholar]
  44. Miller R. T., Counillon L., Pages G., Lifton R. P., Sardet C., Pouysségur J. Structure of the 5'-flanking regulatory region and gene for the human growth factor-activatable Na/H exchanger NHE-1. J Biol Chem. 1991 Jun 15;266(17):10813–10819. [PubMed] [Google Scholar]
  45. Mitsuka M., Berk B. C. Long-term regulation of Na(+)-H+ exchange in vascular smooth muscle cells: role of protein kinase C. Am J Physiol. 1991 Mar;260(3 Pt 1):C562–C569. doi: 10.1152/ajpcell.1991.260.3.C562. [DOI] [PubMed] [Google Scholar]
  46. Moe O. W., Miller R. T., Horie S., Cano A., Preisig P. A., Alpern R. J. Differential regulation of Na/H antiporter by acid in renal epithelial cells and fibroblasts. J Clin Invest. 1991 Nov;88(5):1703–1708. doi: 10.1172/JCI115487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Ng L. L., Dudley C., Bomford J., Hawley D. Leucocyte intracellular pH and Na+/H+ antiport activity in human hypertension. J Hypertens. 1989 Jun;7(6):471–475. doi: 10.1097/00004872-198906000-00006. [DOI] [PubMed] [Google Scholar]
  48. Ng L. L., Harker M., Abel E. D. Mechanisms of leucocyte sodium influx in essential hypertension. Clin Sci (Lond) 1988 Nov;75(5):521–526. doi: 10.1042/cs0750521. [DOI] [PubMed] [Google Scholar]
  49. Ng L. L., Simmons D., Frighi V., Garrido M. C., Bomford J. Effect of protein kinase C modulators on the leucocyte Na+/H+ antiport in type 1 (insulin-dependent) diabetic subjects with albuminuria. Diabetologia. 1990 May;33(5):278–284. doi: 10.1007/BF00403321. [DOI] [PubMed] [Google Scholar]
  50. Ng L. L., Simmons D., Frighi V., Garrido M. C., Bomford J., Hockaday T. D. Leucocyte Na+/H+ antiport activity in type 1 (insulin-dependent) diabetic patients with nephropathy. Diabetologia. 1990 Jun;33(6):371–377. doi: 10.1007/BF00404642. [DOI] [PubMed] [Google Scholar]
  51. Nishizuka Y. Studies and perspectives of protein kinase C. Science. 1986 Jul 18;233(4761):305–312. doi: 10.1126/science.3014651. [DOI] [PubMed] [Google Scholar]
  52. Ober S. S., Pardee A. B. Intracellular pH is increased after transformation of Chinese hamster embryo fibroblasts. Proc Natl Acad Sci U S A. 1987 May;84(9):2766–2770. doi: 10.1073/pnas.84.9.2766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Owens G. K. Differential effects of antihypertensive drug therapy on vascular smooth muscle cell hypertrophy, hyperploidy, and hyperplasia in the spontaneously hypertensive rat. Circ Res. 1985 Apr;56(4):525–536. doi: 10.1161/01.res.56.4.525. [DOI] [PubMed] [Google Scholar]
  54. Postnov Y. V., Kravtsov G. M., Orlov S. N., Pokudin N. I., Postnov I. Y., Kotelevtsev Y. V. Effect of protein kinase C activation on cytoskeleton and cation transport in human erythrocytes. Reproduction of some membrane abnormalities revealed in essential hypertension. Hypertension. 1988 Sep;12(3):267–273. doi: 10.1161/01.hyp.12.3.267. [DOI] [PubMed] [Google Scholar]
  55. Preisig P. A., Alpern R. J. Chronic metabolic acidosis causes an adaptation in the apical membrane Na/H antiporter and basolateral membrane Na(HCO3)3 symporter in the rat proximal convoluted tubule. J Clin Invest. 1988 Oct;82(4):1445–1453. doi: 10.1172/JCI113750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Rao G. N., Sardet C., Pouysségur J., Berk B. C. Differential regulation of Na+/H+ antiporter gene expression in vascular smooth muscle cells by hypertrophic and hyperplastic stimuli. J Biol Chem. 1990 Nov 15;265(32):19393–19396. [PubMed] [Google Scholar]
  57. Reaven G. M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988 Dec;37(12):1595–1607. doi: 10.2337/diab.37.12.1595. [DOI] [PubMed] [Google Scholar]
  58. Reaven G. M., Hoffman B. B. Hypertension as a disease of carbohydrate and lipoprotein metabolism. Am J Med. 1989 Dec 8;87(6A):2S–6S. doi: 10.1016/0002-9343(89)90488-9. [DOI] [PubMed] [Google Scholar]
  59. Resnick L. M., Gupta R. K., Sosa R. E., Corbett M. L., Laragh J. H. Intracellular pH in human and experimental hypertension. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7663–7667. doi: 10.1073/pnas.84.21.7663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Ross R. The pathogenesis of atherosclerosis--an update. N Engl J Med. 1986 Feb 20;314(8):488–500. doi: 10.1056/NEJM198602203140806. [DOI] [PubMed] [Google Scholar]
  61. Salihagić A., Macković M., Banfić H., Sabolić I. Short-term and long-term stimulation of Na+-H+ exchange in cortical brush-border membranes during compensatory growth of the rat kidney. Pflugers Arch. 1988 Dec;413(2):190–196. doi: 10.1007/BF00582530. [DOI] [PubMed] [Google Scholar]
  62. Sardet C., Counillon L., Franchi A., Pouysségur J. Growth factors induce phosphorylation of the Na+/H+ antiporter, glycoprotein of 110 kD. Science. 1990 Feb 9;247(4943):723–726. doi: 10.1126/science.2154036. [DOI] [PubMed] [Google Scholar]
  63. Sardet C., Franchi A., Pouysségur J. Molecular cloning, primary structure, and expression of the human growth factor-activatable Na+/H+ antiporter. Cell. 1989 Jan 27;56(2):271–280. doi: 10.1016/0092-8674(89)90901-x. [DOI] [PubMed] [Google Scholar]
  64. Schwartz G. J., Al-Awqati Q. Carbon dioxide causes exocytosis of vesicles containing H+ pumps in isolated perfused proximal and collecting tubules. J Clin Invest. 1985 May;75(5):1638–1644. doi: 10.1172/JCI111871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Soleimani M., Bergman J. A., Hosford M. A., McKinney T. D. Potassium depletion increases luminal Na+/H+ exchange and basolateral Na+:CO3=:HCO3- cotransport in rat renal cortex. J Clin Invest. 1990 Oct;86(4):1076–1083. doi: 10.1172/JCI114810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Talor Z., Yang W. C., Shuffield J., Sack E., Arruda J. A. Chronic hypercapnia enhances Vmax of Na-H antiporter of renal brush-border membranes. Am J Physiol. 1987 Sep;253(3 Pt 2):F394–F400. doi: 10.1152/ajprenal.1987.253.3.F394. [DOI] [PubMed] [Google Scholar]
  67. Trevisan R., Li L. K., Messent J., Tariq T., Earle K., Walker J. D., Viberti G. Na+/H+ antiport activity and cell growth in cultured skin fibroblasts of IDDM patients with nephropathy. Diabetes. 1992 Oct;41(10):1239–1246. doi: 10.2337/diab.41.10.1239. [DOI] [PubMed] [Google Scholar]
  68. Tsai C. J., Ives H. E., Alpern R. J., Yee V. J., Warnock D. G., Rector F. C., Jr Increased Vmax for Na+/H+ antiporter activity in proximal tubule brush border vesicles from rabbits with metabolic acidosis. Am J Physiol. 1984 Aug;247(2 Pt 2):F339–F343. doi: 10.1152/ajprenal.1984.247.2.F339. [DOI] [PubMed] [Google Scholar]
  69. Tse C. M., Levine S. A., Yun C. H., Brant S. R., Pouyssegur J., Montrose M. H., Donowitz M. Functional characteristics of a cloned epithelial Na+/H+ exchanger (NHE3): resistance to amiloride and inhibition by protein kinase C. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9110–9114. doi: 10.1073/pnas.90.19.9110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Vigne P., Jean T., Barbry P., Frelin C., Fine L. G., Lazdunski M. [3H]Ethylpropylamiloride, a ligand to analyze the properties of the Na+/H+ exchange system in the membranes of normal and hypertrophied kidneys. J Biol Chem. 1985 Nov 15;260(26):14120–14125. [PubMed] [Google Scholar]
  71. Wade J. B., Stetson D. L., Lewis S. A. ADH action: evidence for a membrane shuttle mechanism. Ann N Y Acad Sci. 1981;372:106–117. doi: 10.1111/j.1749-6632.1981.tb15464.x. [DOI] [PubMed] [Google Scholar]
  72. Weinman E. J., Dubinsky W., Shenolikar S. Regulation of the renal Na+-H+ exchanger by protein phosphorylation. Kidney Int. 1989 Oct;36(4):519–525. doi: 10.1038/ki.1989.226. [DOI] [PubMed] [Google Scholar]
  73. Williams B., Schrier R. W. Characterization of glucose-induced in situ protein kinase C activity in cultured vascular smooth muscle cells. Diabetes. 1992 Nov;41(11):1464–1472. doi: 10.2337/diab.41.11.1464. [DOI] [PubMed] [Google Scholar]
  74. Williams B., Tsai P., Schrier R. W. Glucose-induced downregulation of angiotensin II and arginine vasopressin receptors in cultured rat aortic vascular smooth muscle cells. Role of protein kinase C. J Clin Invest. 1992 Nov;90(5):1992–1999. doi: 10.1172/JCI116079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. al-Awqati Q. Regulation of membrane transport by endocytotic removal and exocytotic insertion of transporters. Methods Enzymol. 1989;172:49–59. doi: 10.1016/s0076-6879(89)72007-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES