Abstract
Portal hypertension (PHT) is characterized by splanchnic hyperemia due to a reduction in mesenteric vascular resistance. We hypothesized that alterations in the activity of a guanine-nucleotide regulatory protein (G-protein) might be partially responsible for the marked circulatory disturbances observed in PHT. We, therefore, determined alterations in adenylyl cyclase/cAMP system in prehepatic portal hypertensive rabbits and correlated these changes to the activity of a G-protein. Basal and G-protein-stimulated adenylyl cyclase activities were lower in the PHT superior mesenteric artery (22-26%) and thoracic aorta (31-46%) membranes, but higher (178-321%) in portal vein. The functional activity of Gi alpha proteins (pertussis toxin-catalyzed ADP-dependent ribosylation) increased in the PHT superior mesenteric artery and thoracic aorta, but decreased in portal vein. Immunodetection revealed an increase in the Gi alpha protein subunits (Gi alpha 1/Gi alpha 2 and Gi alpha 3/Go alpha) in PHT thoracic aorta, without any change in Gs alpha proteins; and a decrease in the amount of Gi alpha proteins in PHT portal vein. There was no change in the amount of Gs alpha/Gi alpha in the PHT superior mesenteric artery. We conclude the hemodynamic alterations of PHT are associated with intrinsic alterations in G-protein-enzyme effector systems. These alterations are vessels specific and suggest a possible unique global derangement underlying the vasculopathy of PHT.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ballet F. Hepatic circulation: potential for therapeutic intervention. Pharmacol Ther. 1990;47(2):281–328. doi: 10.1016/0163-7258(90)90091-F. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benoit J. N., Zimmerman B., Premen A. J., Go V. L., Granger D. N. Role of glucagon in splanchnic hyperemia of chronic portal hypertension. Am J Physiol. 1986 Nov;251(5 Pt 1):G674–G677. doi: 10.1152/ajpgi.1986.251.5.G674. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brodde O. E., Michel M. C. Adrenergic receptors and their signal transduction mechanisms in hypertension. J Hypertens Suppl. 1992 Dec;10(7):S133–S145. [PubMed] [Google Scholar]
- Böhm M., Gierschik P., Knorr A., Larisch K., Weismann K., Erdmann E. Role of altered G-protein expression in the regulation of myocardial adenylate cyclase activity and force of contraction in spontaneous hypertensive cardiomyopathy in rats. J Hypertens. 1992 Oct;10(10):1115–1128. doi: 10.1097/00004872-199210000-00003. [DOI] [PubMed] [Google Scholar]
- Cech S. Y., Broaddus W. C., Maguire M. E. Adenylate cyclase: the role of magnesium and other divalent cations. Mol Cell Biochem. 1980 Dec 10;33(1-2):67–92. doi: 10.1007/BF00224572. [DOI] [PubMed] [Google Scholar]
- Cummings S. A., Groszmann R. J., Kaumann A. J. Hypersensitivity of mesenteric veins to 5-hydroxytryptamine- and ketanserin-induced reduction of portal pressure in portal hypertensive rats. Br J Pharmacol. 1986 Nov;89(3):501–513. doi: 10.1111/j.1476-5381.1986.tb11150.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Enomoto K., Asakawa T. Inhibition of catalytic unit of adenylate cyclase and activation of GTPase of Ni protein by beta gamma-subunits of GTP-binding proteins. FEBS Lett. 1986 Jun 23;202(1):63–68. doi: 10.1016/0014-5793(86)80650-0. [DOI] [PubMed] [Google Scholar]
- Eschenhagen T., Mende U., Diederich M., Nose M., Schmitz W., Scholz H., Schulte am Esch J., Warnholtz A., Schäfer H. Long term beta-adrenoceptor-mediated up-regulation of Gi alpha and G(o) alpha mRNA levels and pertussis toxin-sensitive guanine nucleotide-binding proteins in rat heart. Mol Pharmacol. 1992 Nov;42(5):773–783. [PubMed] [Google Scholar]
- Feldman A. M., Cates A. E., Veazey W. B., Hershberger R. E., Bristow M. R., Baughman K. L., Baumgartner W. A., Van Dop C. Increase of the 40,000-mol wt pertussis toxin substrate (G protein) in the failing human heart. J Clin Invest. 1988 Jul;82(1):189–197. doi: 10.1172/JCI113569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feldman A. M. Experimental issues in assessment of G protein function in cardiac disease. Circulation. 1991 Oct;84(4):1852–1861. doi: 10.1161/01.cir.84.4.1852. [DOI] [PubMed] [Google Scholar]
- Gerbes A. L., Remien J., Jüngst D., Sauerbruch T., Paumgartner G. Evidence for down-regulation of beta-2-adrenoceptors in cirrhotic patients with severe ascites. Lancet. 1986 Jun 21;1(8495):1409–1411. doi: 10.1016/s0140-6736(86)91556-4. [DOI] [PubMed] [Google Scholar]
- Glomset J. A., Gelb M. H., Farnsworth C. C. Prenyl proteins in eukaryotic cells: a new type of membrane anchor. Trends Biochem Sci. 1990 Apr;15(4):139–142. doi: 10.1016/0968-0004(90)90213-u. [DOI] [PubMed] [Google Scholar]
- Hashizume M., Inokuchi K., Tanaka K. The role of prostacyclin in patients with portal hypertension. Liver. 1985 Apr;5(2):89–93. doi: 10.1111/j.1600-0676.1985.tb00220.x. [DOI] [PubMed] [Google Scholar]
- Joh T., Granger D. N., Benoit J. N. Endogenous vasoconstrictor tone in intestine of normal and portal hypertensive rats. Am J Physiol. 1993 Jan;264(1 Pt 2):H171–H177. doi: 10.1152/ajpheart.1993.264.1.H171. [DOI] [PubMed] [Google Scholar]
- Johansson B. Structural and functional changes in rat portal veins after experimental portal hypertension. Acta Physiol Scand. 1976 Nov;98(3):381–383. doi: 10.1111/j.1748-1716.1976.tb10324.x. [DOI] [PubMed] [Google Scholar]
- Kaumann A. J., Groszmann R. J. Catecholamines relax portal and mesenteric veins from normal and portal hypertensive rats. Am J Physiol. 1989 Dec;257(6 Pt 1):G977–G981. doi: 10.1152/ajpgi.1989.257.6.G977. [DOI] [PubMed] [Google Scholar]
- Kiel J. W., Pitts V., Benoit J. N., Granger D. N., Shepherd A. P. Reduced vascular sensitivity to norepinephrine in portal-hypertensive rats. Am J Physiol. 1985 Feb;248(2 Pt 1):G192–G195. doi: 10.1152/ajpgi.1985.248.2.G192. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Levitzki A., Bar-Sinai A. The regulation of adenylyl cyclase by receptor-operated G proteins. Pharmacol Ther. 1991;50(3):271–283. doi: 10.1016/0163-7258(91)90045-n. [DOI] [PubMed] [Google Scholar]
- Milligan G., Green A. Agonist control of G-protein levels. Trends Pharmacol Sci. 1991 Jun;12(6):207–209. doi: 10.1016/0165-6147(91)90551-3. [DOI] [PubMed] [Google Scholar]
- Milligan G. Techniques used in the identification and analysis of function of pertussis toxin-sensitive guanine nucleotide binding proteins. Biochem J. 1988 Oct 1;255(1):1–13. doi: 10.1042/bj2550001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pizcueta M. P., Piqué J. M., Bosch J., Whittle B. J., Moncada S. Effects of inhibiting nitric oxide biosynthesis on the systemic and splanchnic circulation of rats with portal hypertension. Br J Pharmacol. 1992 Jan;105(1):184–190. doi: 10.1111/j.1476-5381.1992.tb14233.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramond M. J., Comoy E., Lebrec D. Alterations in isoprenaline sensitivity in patients with cirrhosis: evidence of abnormality of the sympathetic nervous activity. Br J Clin Pharmacol. 1986 Feb;21(2):191–196. doi: 10.1111/j.1365-2125.1986.tb05174.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reichen J. Liver function and pharmacological considerations in pathogenesis and treatment of portal hypertension. Hepatology. 1990 Jun;11(6):1066–1078. doi: 10.1002/hep.1840110625. [DOI] [PubMed] [Google Scholar]
- Sitzmann J. V., Bulkley G. B., Mitchell M. C., Campbell K. Role of prostacyclin in the splanchnic hyperemia contributing to portal hypertension. Ann Surg. 1989 Mar;209(3):322–327. doi: 10.1097/00000658-198903000-00012. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sitzmann J. V., Li S. S., Lin P. W. Prostacyclin mediates splanchnic vascular response to norepinephrine in portal hypertension. J Surg Res. 1989 Sep;47(3):208–211. doi: 10.1016/0022-4804(89)90109-1. [DOI] [PubMed] [Google Scholar]
- Tanuma S., Kawashima K., Endo H. Eukaryotic mono(ADP-ribosyl)transferase that ADP-ribosylates GTP-binding regulatory Gi protein. J Biol Chem. 1988 Apr 15;263(11):5485–5489. [PubMed] [Google Scholar]
- Taussig R., Iñiguez-Lluhi J. A., Gilman A. G. Inhibition of adenylyl cyclase by Gi alpha. Science. 1993 Jul 9;261(5118):218–221. doi: 10.1126/science.8327893. [DOI] [PubMed] [Google Scholar]
- Villamediana L. M., Dieguez G., Santos J. C., García-Villalón A. L., Caramelo C., López-Novoa J. M. Vascular reactivity to norepinephrine in rats with cirrhosis of the liver. Can J Physiol Pharmacol. 1988 May;66(5):567–572. doi: 10.1139/y88-087. [DOI] [PubMed] [Google Scholar]
- Vorobioff J., Bredfeldt J. E., Groszmann R. J. Hyperdynamic circulation in portal-hypertensive rat model: a primary factor for maintenance of chronic portal hypertension. Am J Physiol. 1983 Jan;244(1):G52–G57. doi: 10.1152/ajpgi.1983.244.1.G52. [DOI] [PubMed] [Google Scholar]
- Willett I. R., Esler M., Jennings G., Dudley F. J. Sympathetic tone modulates portal venous pressure in alcoholic cirrhosis. Lancet. 1986 Oct 25;2(8513):939–943. doi: 10.1016/s0140-6736(86)90599-4. [DOI] [PubMed] [Google Scholar]
- Wu Y. P., Li S. S., Campbell K. A., Sitzmann J. V. Modulation of splanchnic vascular sensitivity to angiotensin II. Surgery. 1991 Aug;110(2):162–168. [PubMed] [Google Scholar]







