Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1994 Jun;93(6):2710–2717. doi: 10.1172/JCI117285

Low density lipoprotein enhances the cellular action of arginine vasopressin in rat glomerular mesangial cells in culture.

S Ishikawa 1, M Kawasumi 1, K Okada 1, T Saito 1
PMCID: PMC294522  PMID: 8201008

Abstract

The present study was undertaken to determine whether low density lipoprotein (LDL) modulates the cellular action of arginine vasopressin (AVP) in rat glomerular mesangial cells in culture. AVP increased cellular free calcium ([Ca2+]i) in a dose-dependent manner. When cells were preincubated for 24 h with 10 microgram/ml LDL, the 1 x 10(-7) M AVP-mobilized [Ca2+]i was 874 nM, a value significantly greater than that of 375 nM in the intact cells. AVP caused a biphasic change in cellular pH (pHi), namely, an early acidification followed by a sustained alkalinization, and the change in pHi produced by AVP was also enhanced by LDL. AVP stimulated a 2.2-fold increase in [3H]thymidine incorporation, an effect significantly greater in the presence of 10 micrograms/ml LDL. Furthermore, 1 x 10(-7) M AVP significantly activated mitogen-activated protein kinase from 14.0 to 24.5 pmol/mg protein. Such an activation was significantly enhanced by the LDL pretreatment. Both [3H]thymide incorporation and mitogen-activated protein kinase were not altered by 10 micrograms/ml LDL. [3H]AVP receptor binding was not affected by the LDL pretreatment. 1 x 10(-7) M AVP increased inositol trisphosphate production by 1.9-fold, an effect significantly greater in the presence of LDL. These results indicate that LDL enhances the cellular action of AVP and the AVP-stimulated cellular proliferation in glomerular mesangial cells. A site of action of LDL is the hydrolysis of phosphatidylinositol.

Full text

PDF
2710

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ausiello D. A., Kreisberg J. I., Roy C., Karnovsky M. J. Contraction of cultured rat glomerular cells of apparent mesangial origin after stimulation with angiotensin II and arginine vasopressin. J Clin Invest. 1980 Mar;65(3):754–760. doi: 10.1172/JCI109723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Block L. H., Knorr M., Vogt E., Locher R., Vetter W., Groscurth P., Qiao B. Y., Pometta D., James R., Regenass M. Low density lipoprotein causes general cellular activation with increased phosphatidylinositol turnover and lipoprotein catabolism. Proc Natl Acad Sci U S A. 1988 Feb;85(3):885–889. doi: 10.1073/pnas.85.3.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bonventre J. V., Skorecki K. L., Kreisberg J. I., Cheung J. Y. Vasopressin increases cytosolic free calcium concentration in glomerular mesangial cells. Am J Physiol. 1986 Jul;251(1 Pt 2):F94–102. doi: 10.1152/ajprenal.1986.251.1.F94. [DOI] [PubMed] [Google Scholar]
  4. Bova S., Goldman W. F., Yauan X. J., Blaustein M. P. Influence of Na+ gradient on Ca2+ transients and contraction in vascular smooth muscle. Am J Physiol. 1990 Aug;259(2 Pt 2):H409–H423. doi: 10.1152/ajpheart.1990.259.2.H409. [DOI] [PubMed] [Google Scholar]
  5. Bühler F. R., Tkachuk V. A., Hahn A. W., Resink T. J. Low- and high-density lipoproteins as hormonal regulators of platelet, vascular endothelial and smooth muscle cell interactions: relevance to hypertension. J Hypertens Suppl. 1991 Dec;9(6):S28–S36. [PubMed] [Google Scholar]
  6. Capponi A. M., Lew P. D., Vallotton M. B. Cytosolic free calcium levels in monolayers of cultured rat aortic smooth muscle cells. Effects of angiotensin II and vasopressin. J Biol Chem. 1985 Jul 5;260(13):7836–7842. [PubMed] [Google Scholar]
  7. Castelli W. P., Anderson K. A population at risk. Prevalence of high cholesterol levels in hypertensive patients in the Framingham Study. Am J Med. 1986 Feb 14;80(2A):23–32. doi: 10.1016/0002-9343(86)90157-9. [DOI] [PubMed] [Google Scholar]
  8. Chen J. K., Hoshi H., McClure D. B., McKeehan W. L. Role of lipoproteins in growth of human adult arterial endothelial and smooth muscle cells in low lipoprotein-deficient serum. J Cell Physiol. 1986 Nov;129(2):207–214. doi: 10.1002/jcp.1041290212. [DOI] [PubMed] [Google Scholar]
  9. Davis R. J. The mitogen-activated protein kinase signal transduction pathway. J Biol Chem. 1993 Jul 15;268(20):14553–14556. [PubMed] [Google Scholar]
  10. Ferrannini E., Haffner S. M., Stern M. P. Essential hypertension: an insulin-resistant state. J Cardiovasc Pharmacol. 1990;15 (Suppl 5):S18–S25. [PubMed] [Google Scholar]
  11. Fishman J. B., Dickey B. F., Bucher N. L., Fine R. E. Internalization, recycling, and redistribution of vasopressin receptors in rat hepatocytes. J Biol Chem. 1985 Oct 15;260(23):12641–12646. [PubMed] [Google Scholar]
  12. Force T., Kyriakis J. M., Avruch J., Bonventre J. V. Endothelin, vasopressin, and angiotensin II enhance tyrosine phosphorylation by protein kinase C-dependent and -independent pathways in glomerular mesangial cells. J Biol Chem. 1991 Apr 5;266(10):6650–6656. [PubMed] [Google Scholar]
  13. Ganz M. B., Pekar S. K., Perfetto M. C., Sterzel R. B. Arginine vasopressin promotes growth of rat glomerular mesangial cells in culture. Am J Physiol. 1988 Nov;255(5 Pt 2):F898–F906. doi: 10.1152/ajprenal.1988.255.5.F898. [DOI] [PubMed] [Google Scholar]
  14. Ganz M. B., Perfetto M. C., Boron W. F. Effects of mitogens and other agents on rat mesangial cell proliferation, pH, and Ca2+. Am J Physiol. 1990 Aug;259(2 Pt 2):F269–F278. doi: 10.1152/ajprenal.1990.259.2.F269. [DOI] [PubMed] [Google Scholar]
  15. Granot Y., Erikson E., Fridman H., Van Putten V., Williams B., Schrier R. W., Maller J. L. Direct evidence for tyrosine and threonine phosphorylation and activation of mitogen-activated protein kinase by vasopressin in cultured rat vascular smooth muscle cells. J Biol Chem. 1993 May 5;268(13):9564–9569. [PubMed] [Google Scholar]
  16. Granot Y., Van Putten V., Schrier R. W. Vasopressin dependent tyrosine phosphorylation of a 38 kDa protein in human platelets. Biochem Biophys Res Commun. 1990 Apr 30;168(2):566–573. doi: 10.1016/0006-291x(90)92358-7. [DOI] [PubMed] [Google Scholar]
  17. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  18. Ishikawa S. E., Okada K., Saito T. Prompt inhibition of arginine vasopressin-induced cellular adenosine 3',5'-monophosphate production by extracellular sodium depletion in rat renal inner medullary collecting duct cells in culture. Endocrinology. 1990 Aug;127(2):560–566. doi: 10.1210/endo-127-2-560. [DOI] [PubMed] [Google Scholar]
  19. Ishikawa S., Okada K., Saito T. Arginine vasopressin increases cellular free calcium concentration and adenosine 3',5'-monophosphate production in rat renal papillary collecting tubule cells in culture. Endocrinology. 1988 Sep;123(3):1376–1384. doi: 10.1210/endo-123-3-1376. [DOI] [PubMed] [Google Scholar]
  20. Ishikawa S., Okada K., Saito T. Increases in cellular sodium concentration by arginine vasopressin and endothelin in cultured rat glomerular mesangial cells. Endocrinology. 1992 Sep;131(3):1429–1435. doi: 10.1210/endo.131.3.1505472. [DOI] [PubMed] [Google Scholar]
  21. Ishikawa S., Okada K., Saito T. pH dependence of the action of arginine vasopressin in renal collecting tubule. Am J Physiol. 1992 May;262(5 Pt 2):F784–F792. doi: 10.1152/ajprenal.1992.262.5.F784. [DOI] [PubMed] [Google Scholar]
  22. Ishikawa S., Saito T. Optimal concentration of cellular free calcium for AVP-induced cAMP in collecting tubules. Kidney Int. 1990 Apr;37(4):1060–1066. doi: 10.1038/ki.1990.86. [DOI] [PubMed] [Google Scholar]
  23. Keane W. F., O'Donnell M. P., Kasiske B. L., Kim Y. Oxidative modification of low-density lipoproteins by mesangial cells. J Am Soc Nephrol. 1993 Aug;4(2):187–194. doi: 10.1681/ASN.V42187. [DOI] [PubMed] [Google Scholar]
  24. Kreisberg J. I., Karnovsky M. J. Glomerular cells in culture. Kidney Int. 1983 Mar;23(3):439–447. doi: 10.1038/ki.1983.40. [DOI] [PubMed] [Google Scholar]
  25. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  26. Magil A. B., Frohlich J. J., Innis S. M., Steinbrecher U. P. Oxidized low-density lipoprotein in experimental focal glomerulosclerosis. Kidney Int. 1993 Jun;43(6):1243–1250. doi: 10.1038/ki.1993.176. [DOI] [PubMed] [Google Scholar]
  27. Mené P., Simonson M. S., Dunn M. J. Physiology of the mesangial cell. Physiol Rev. 1989 Oct;69(4):1347–1424. doi: 10.1152/physrev.1989.69.4.1347. [DOI] [PubMed] [Google Scholar]
  28. Meyer-Lehnert H., Schrier R. W. Cyclosporine A enhances vasopressin-induced Ca2+ mobilization and contraction in mesangial cells. Kidney Int. 1988 Jul;34(1):89–97. doi: 10.1038/ki.1988.149. [DOI] [PubMed] [Google Scholar]
  29. Nambi P., Watt R., Whitman M., Aiyar N., Moore J. P., Evan G. I., Crooke S. Induction of c-fos protein by activation of vasopressin receptors in smooth muscle cells. FEBS Lett. 1989 Mar 13;245(1-2):61–64. doi: 10.1016/0014-5793(89)80192-9. [DOI] [PubMed] [Google Scholar]
  30. Okada K., Caramelo C., Tsai P., Schrier R. W. Effect of inhibition of Na+/K(+)-adenosine triphosphatase on vascular action of vasopressin. J Clin Invest. 1990 Oct;86(4):1241–1248. doi: 10.1172/JCI114830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Okada K., Ishikawa S., Saito T. Mechanisms of vasopressin-induced increase in intracellular Na+ in vascular smooth muscle cells. Am J Physiol. 1991 Dec;261(6 Pt 2):F1007–F1012. doi: 10.1152/ajprenal.1991.261.6.F1007. [DOI] [PubMed] [Google Scholar]
  32. Okada K., Tsai P., Briner V. A., Caramelo C., Schrier R. W. Effects of extra- and intracellular pH on vascular action of arginine vasopressin. Am J Physiol. 1991 Jan;260(1 Pt 2):F39–F45. doi: 10.1152/ajprenal.1991.260.1.F39. [DOI] [PubMed] [Google Scholar]
  33. Rayner H. C., Horsburgh T., Brown S. L., Lavender F. L., Winder A. F., Walls J. Receptor-mediated endocytosis of low-density lipoprotein by cultured human glomerular cells. Nephron. 1990;55(3):292–299. doi: 10.1159/000185978. [DOI] [PubMed] [Google Scholar]
  34. Sachinidis A., Mengden T., Locher R., Brunner C., Vetter W. Novel cellular activities for low density lipoprotein in vascular smooth muscle cells. Hypertension. 1990 Jun;15(6 Pt 2):704–711. doi: 10.1161/01.hyp.15.6.704. [DOI] [PubMed] [Google Scholar]
  35. Scott-Burden T., Resink T. J., Hahn A. W., Baur U., Box R. J., Bühler F. R. Induction of growth-related metabolism in human vascular smooth muscle cells by low density lipoprotein. J Biol Chem. 1989 Jul 25;264(21):12582–12589. [PubMed] [Google Scholar]
  36. Shirakabe K., Gotoh Y., Nishida E. A mitogen-activated protein (MAP) kinase activating factor in mammalian mitogen-stimulated cells is homologous to Xenopus M phase MAP kinase activator. J Biol Chem. 1992 Aug 15;267(23):16685–16690. [PubMed] [Google Scholar]
  37. Takeda K., Meyer-Lehnert H., Kim J. K., Schrier R. W. AVP-induced Ca fluxes and contraction of rat glomerular mesangial cells. Am J Physiol. 1988 Jul;255(1 Pt 2):F142–F150. doi: 10.1152/ajprenal.1988.255.1.F142. [DOI] [PubMed] [Google Scholar]
  38. Takemura T., Yoshioka K., Aya N., Murakami K., Matumoto A., Itakura H., Kodama T., Suzuki H., Maki S. Apolipoproteins and lipoprotein receptors in glomeruli in human kidney diseases. Kidney Int. 1993 Apr;43(4):918–927. doi: 10.1038/ki.1993.129. [DOI] [PubMed] [Google Scholar]
  39. Taubman M. B., Berk B. C., Izumo S., Tsuda T., Alexander R. W., Nadal-Ginard B. Angiotensin II induces c-fos mRNA in aortic smooth muscle. Role of Ca2+ mobilization and protein kinase C activation. J Biol Chem. 1989 Jan 5;264(1):526–530. [PubMed] [Google Scholar]
  40. Yamamura Y., Ogawa H., Chihara T., Kondo K., Onogawa T., Nakamura S., Mori T., Tominaga M., Yabuuchi Y. OPC-21268, an orally effective, nonpeptide vasopressin V1 receptor antagonist. Science. 1991 Apr 26;252(5005):572–574. doi: 10.1126/science.1850553. [DOI] [PubMed] [Google Scholar]
  41. Zachary I., Gil J., Lehmann W., Sinnett-Smith J., Rozengurt E. Bombesin, vasopressin, and endothelin rapidly stimulate tyrosine phosphorylation in intact Swiss 3T3 cells. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4577–4581. doi: 10.1073/pnas.88.11.4577. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES