Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Sep;143(3):1411–1419. doi: 10.1128/jb.143.3.1411-1419.1980

Changes in regulation of ribosomal protein synthesis during vegetative growth and sporulation of Saccharomyces cerevisiae.

N J Pearson, J E Haber
PMCID: PMC294523  PMID: 6997272

Abstract

When diploid Saccharomyces cerevisiae cells logarithmically growing in acetate medium were placed in sporulation medium, the relative rates of synthesis of 40 or more individual ribosomal proteins (r-proteins) were coordinately depressed to approximately 20% of those of growing cells. These new depressed rates remained constant for at least 10 h into sporulation. If yeast nitrogen base was added 4 yh after the beginning of sporulation to shift the cells back to vegetative growth, the original relative rates of r-protein synthesis were rapidly reestablished. this upshift in the rates occurred even in diploids homozygous for the regulatory mutation rna2 at the restrictive temperature for this mutation (34 degrees C). However, once these mutant cells began to bud and grow at 34 degrees C, the phenotype of rna2 was expressed and the syntheses of r-proteins were again coordinately depressed. At least one protein whose rate of synthesis was not depressed by rna2 in vegetative cells did have a decreased rate of synthesis during sporulation. Another r-protein whose synthesis was depressed by rna2 maintained a high rate of synthesis at the beginning of sporulation. These data suggest that the mechanism responsible for coordinate control of r-protein synthesis during sporulation does not require the gene product of RNA2 and thus defines a separate mechanism by which r-proteins are coordinately controlled in S. cerevisiae.

Full text

PDF
1411

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dennis P. P., Nomura M. Stringent control of ribosomal protein gene expression in Escherichia coli. Proc Natl Acad Sci U S A. 1974 Oct;71(10):3819–3823. doi: 10.1073/pnas.71.10.3819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Esposito R. E., Esposito M. S. Genetic recombination and commitment to meiosis in Saccharomyces. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3172–3176. doi: 10.1073/pnas.71.8.3172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gorenstein C., Warner J. R. Coordinate regulation of the synthesis of eukaryotic ribosomal proteins. Proc Natl Acad Sci U S A. 1976 May;73(5):1547–1551. doi: 10.1073/pnas.73.5.1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Lemaux P. G., Herendeen S. L., Bloch P. L., Neidhardt F. C. Transient rates of synthesis of individual polypeptides in E. coli following temperature shifts. Cell. 1978 Mar;13(3):427–434. doi: 10.1016/0092-8674(78)90317-3. [DOI] [PubMed] [Google Scholar]
  5. Lindahl L., Post L., Nomura M. DNA-dependent in vitro synthesis of fibosomal proteins, protein elongation factors, and RNA polymerase subunit alpha: inhibition by ppGpp. Cell. 1976 Nov;9(3):439–448. doi: 10.1016/0092-8674(76)90089-1. [DOI] [PubMed] [Google Scholar]
  6. McCusker J. H., Haber J. E. Efficient sporulation of yeast in media buffered near pH6. J Bacteriol. 1977 Oct;132(1):180–185. doi: 10.1128/jb.132.1.180-185.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Pearson N. J., Haber J. E. Changes in regulation of ribosome synthesis during different stages of the life cycle of Saccharomyces cerevisiae. Mol Gen Genet. 1977 Dec 14;158(1):81–91. doi: 10.1007/BF00455122. [DOI] [PubMed] [Google Scholar]
  8. Rhaese H. J., Scheckel R., Groscurth R., Stamminger G. Studies on the control of development. Highly phosphorylated nucleotides (HPN) are correlated with ascospore formation in Saccharomyces cerevisiae. Mol Gen Genet. 1979 Feb 16;170(1):57–65. doi: 10.1007/BF00268580. [DOI] [PubMed] [Google Scholar]
  9. Trew B. J., Friesen J. D., Moens P. B. Two-dimensional protein patterns during growth and sporulation in Saccharomyces cerevisiae. J Bacteriol. 1979 Apr;138(1):60–69. doi: 10.1128/jb.138.1.60-69.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Warner J. R., Gorenstein C. The synthesis of eucaryotic ribosomal proteins in vitro. Cell. 1977 May;11(1):201–212. doi: 10.1016/0092-8674(77)90331-2. [DOI] [PubMed] [Google Scholar]
  11. Warner J. R., Gorenstein C. Yeast has a true stringent response. Nature. 1978 Sep 28;275(5678):338–339. doi: 10.1038/275338a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES