Abstract
Na,K-ATPase activity and isoform expression were measured in rat small intestinal mucosa taken from both normal and streptozocin-treated diabetic rats. Enzyme activity and abundance was 1.7-2.3-fold higher in rats diabetic for 2 wk than in controls. This was associated with 1.4-1.7-fold increases in small intestinal protein and DNA content. Ouabain inhibition curves of Na,K-ATPase were monophasic with Kis of 2.6 +/- 1.4 x 10(-4) and 2.0 +/- 1.2 x 10(-4) M for control and diabetic rats, respectively (NS). Northern blot analysis revealed a 2.5-fold increase in mRNA alpha 1 and a 3.4-fold increase in mRNA beta 1 in diabetic rats relative to controls. Two thirds of this increase occurred within 24h after injection of streptozocin. Immunoblots of intestinal enzyme preparations from diabetic and control rats indicated the presence of alpha 1 and beta 1 subunits but not of alpha 2 or alpha 3. Administration of glucagon (80 micrograms/kg) to normal rats daily for 14-16 d increased mRNA alpha 1 3.1-fold but did not increase mRNA beta 1 or enzyme activity. In experimental diabetes, alpha 1 and beta 1 isoforms of Na,K-ATPase are coordinately upregulated at both protein and mRNA levels, an effect which appears to be partially mediated by the associated hyperglucagonemia.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Askari A., Huang W. H., McCormick P. W. (Na+ + K+)-dependent adenosine triphosphatase. Regulation of inorganic phosphate, magnesium ion, and calcium ion interactions with the enzyme by ouabain. J Biol Chem. 1983 Mar 25;258(6):3453–3460. [PubMed] [Google Scholar]
- Baginski E. S., Foà P. P., Zak B. Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. Clin Chem. 1967 Apr;13(4):326–332. [PubMed] [Google Scholar]
- Brismar T., Sima A. A. Changes in nodal function in nerve fibres of the spontaneously diabetic BB-Wistar rat: potential clamp analysis. Acta Physiol Scand. 1981 Dec;113(4):499–506. doi: 10.1111/j.1748-1716.1981.tb06928.x. [DOI] [PubMed] [Google Scholar]
- CRANE R. K. An effect of alloxan-diabetes on the active transport of sugars by rat small intestine, in vitro. Biochem Biophys Res Commun. 1961 Apr 28;4:436–440. doi: 10.1016/0006-291x(61)90304-7. [DOI] [PubMed] [Google Scholar]
- Caspary W. F. Increase of active transport of conjugated bile salts in streptozotocin-diabetic rat small intestine. Gut. 1973 Dec;14(12):949–955. doi: 10.1136/gut.14.12.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang E. B., Fedorak R. N., Field M. Experimental diabetic diarrhea in rats. Intestinal mucosal denervation hypersensitivity and treatment with clonidine. Gastroenterology. 1986 Sep;91(3):564–569. [PubMed] [Google Scholar]
- Charney A. N., Donowitz M. Prevention and reversal of cholera enterotoxin-induced intestinal secretion by methylprednisolone induction of Na+-K+-ATPase. J Clin Invest. 1976 Jun;57(6):1590–1599. doi: 10.1172/JCI108429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Cortas N., Elstein D., Markowitz D., Edelman I. S. Anomalous mobilities of Na,K-ATPase alpha subunit isoforms in SDS-PAGE: identification by N-terminal sequencing. Biochim Biophys Acta. 1991 Nov 18;1070(1):223–228. doi: 10.1016/0005-2736(91)90168-8. [DOI] [PubMed] [Google Scholar]
- Fedorak R. N., Chang E. B., Madara J. L., Field M. Intestinal adaptation to diabetes. Altered Na-dependent nutrient absorption in streptozocin-treated chronically diabetic rats. J Clin Invest. 1987 Jun;79(6):1571–1578. doi: 10.1172/JCI112991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fedorak R. N., Cortas N., Field M. Diabetes mellitus and glucagon alter ouabain-sensitive Na(+)-K(+)-ATPase in rat small intestine. Diabetes. 1991 Dec;40(12):1603–1610. doi: 10.2337/diab.40.12.1603. [DOI] [PubMed] [Google Scholar]
- Fedorak R. N., Gershon M. D., Field M. Induction of intestinal glucose carriers in streptozocin-treated chronically diabetic rats. Gastroenterology. 1989 Jan;96(1):37–44. doi: 10.1016/0016-5085(89)90761-0. [DOI] [PubMed] [Google Scholar]
- Fein F. S., Kornstein L. B., Strobeck J. E., Capasso J. M., Sonnenblick E. H. Altered myocardial mechanics in diabetic rats. Circ Res. 1980 Dec;47(6):922–933. doi: 10.1161/01.res.47.6.922. [DOI] [PubMed] [Google Scholar]
- Fuller P. J., Verity K. Colonic sodium-potassium adenosine triphosphate subunit gene expression: ontogeny and regulation by adrenocortical steroids. Endocrinology. 1990 Jul;127(1):32–38. doi: 10.1210/endo-127-1-32. [DOI] [PubMed] [Google Scholar]
- Geering K., Theulaz I., Verrey F., Häuptle M. T., Rossier B. C. A role for the beta-subunit in the expression of functional Na+-K+-ATPase in Xenopus oocytes. Am J Physiol. 1989 Nov;257(5 Pt 1):C851–C858. doi: 10.1152/ajpcell.1989.257.5.C851. [DOI] [PubMed] [Google Scholar]
- Gick G. G., Ismail-Beigi F., Edelman I. S. Thyroidal regulation of rat renal and hepatic Na,K-ATPase gene expression. J Biol Chem. 1988 Nov 15;263(32):16610–16618. [PubMed] [Google Scholar]
- Gloor S., Antonicek H., Sweadner K. J., Pagliusi S., Frank R., Moos M., Schachner M. The adhesion molecule on glia (AMOG) is a homologue of the beta subunit of the Na,K-ATPase. J Cell Biol. 1990 Jan;110(1):165–174. doi: 10.1083/jcb.110.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greene D. A., Lattimer S. A. Impaired rat sciatic nerve sodium-potassium adenosine triphosphatase in acute streptozocin diabetes and its correction by dietary myo-inositol supplementation. J Clin Invest. 1983 Sep;72(3):1058–1063. doi: 10.1172/JCI111030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HUEBSCHER G., WEST G. R. SPECIFIC ASSAYS OF SOME PHOSPHATASES IN SUBCELLULAR FRACTIONS OF SMALL INTESTINAL MUCOSA. Nature. 1965 Feb 20;205:799–800. doi: 10.1038/205799a0. [DOI] [PubMed] [Google Scholar]
- Herrera V. L., Emanuel J. R., Ruiz-Opazo N., Levenson R., Nadal-Ginard B. Three differentially expressed Na,K-ATPase alpha subunit isoforms: structural and functional implications. J Cell Biol. 1987 Oct;105(4):1855–1865. doi: 10.1083/jcb.105.4.1855. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horisberger J. D., Jaunin P., Reuben M. A., Lasater L. S., Chow D. C., Forte J. G., Sachs G., Rossier B. C., Geering K. The H,K-ATPase beta-subunit can act as a surrogate for the beta-subunit of Na,K-pumps. J Biol Chem. 1991 Oct 15;266(29):19131–19134. [PubMed] [Google Scholar]
- Jervis E. L., Levin R. J. Anatomic adaptation of the alimentary tract of the rat to the hyperphagia of chronic alloxan-diabetes. Nature. 1966 Apr 23;210(5034):391–393. doi: 10.1038/210391a0. [DOI] [PubMed] [Google Scholar]
- Jorgensen P. L. Purification and characterization of (Na+ plus K+ )-ATPase. 3. Purification from the outer medulla of mammalian kidney after selective removal of membrane components by sodium dodecylsulphate. Biochim Biophys Acta. 1974 Jul 12;356(1):36–52. doi: 10.1016/0005-2736(74)90292-2. [DOI] [PubMed] [Google Scholar]
- Kaplan J. G. Membrane cation transport and the control of proliferation of mammalian cells. Annu Rev Physiol. 1978;40:19–41. doi: 10.1146/annurev.ph.40.030178.000315. [DOI] [PubMed] [Google Scholar]
- Khadouri C., Barlet-Bas C., Doucet A. Mechanism of increased tubular Na-K-ATPase during streptozotocin-induced diabetes. Pflugers Arch. 1987 Jul;409(3):296–301. doi: 10.1007/BF00583479. [DOI] [PubMed] [Google Scholar]
- Koch K. S., Leffert H. L. Increased sodium ion influx is necessary to initiate rat hepatocyte proliferation. Cell. 1979 Sep;18(1):153–163. doi: 10.1016/0092-8674(79)90364-7. [DOI] [PubMed] [Google Scholar]
- Ku D. D., Roberts R. B., Sellers B. M., Meezan E. Regression of renal hypertrophy and elevated renal Na+,K+-ATPase activity after insulin treatment in streptozotocin-diabetic rats. Endocrinology. 1987 May;120(5):2166–2173. doi: 10.1210/endo-120-5-2166. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lal D., Schedl H. P. Intestinal adaptation in diabetes: amino acid absorption. Am J Physiol. 1974 Oct;227(4):827–831. doi: 10.1152/ajplegacy.1974.227.4.827. [DOI] [PubMed] [Google Scholar]
- Leffert H. L., Koch K. S. Ionic events at the membrane initiate rat liver regeneration. Ann N Y Acad Sci. 1980;339:201–215. doi: 10.1111/j.1749-6632.1980.tb15979.x. [DOI] [PubMed] [Google Scholar]
- Liberman U. A., Asano Y., Lo C. S., Edelman I. S. Relationship between Na+-dependent respiration and Na+ + K+-adenosine triphosphatase activity in the action of thyroid hormone on rat jejunal mucosa. Biophys J. 1979 Jul;27(1):127–144. doi: 10.1016/S0006-3495(79)85207-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lingrel J. B., Orlowski J., Shull M. M., Price E. M. Molecular genetics of Na,K-ATPase. Prog Nucleic Acid Res Mol Biol. 1990;38:37–89. doi: 10.1016/s0079-6603(08)60708-4. [DOI] [PubMed] [Google Scholar]
- Lu X. P., Leffert H. L. Induction of sodium pump beta 1-subunit mRNA expression during hepatocellular growth transitions in vitro and in vivo. J Biol Chem. 1991 May 15;266(14):9276–9284. [PubMed] [Google Scholar]
- Luppa D., Müller F. Anstieg der (Na+ + K+)-aktivierbaren ATPase-Aktivität in den basolateralen Plasmamembranen der Dünndarmmukosa diabetischer Ratten. Acta Biol Med Ger. 1982;41(10):891–898. [PubMed] [Google Scholar]
- Luppa D., Müller F. Effect of diabetes and adrenocortical state on intestinal transport capacity and (Na+ + K+)-activated adenosine triphosphatase activity. Diabete Metab. 1986 Aug;12(4):191–196. [PubMed] [Google Scholar]
- Lytton J., Lin J. C., Guidotti G. Identification of two molecular forms of (Na+,K+)-ATPase in rat adipocytes. Relation to insulin stimulation of the enzyme. J Biol Chem. 1985 Jan 25;260(2):1177–1184. [PubMed] [Google Scholar]
- MacGregor L. C., Matschinsky F. M. Experimental diabetes mellitus impairs the function of the retinal pigmented epithelium. Metabolism. 1986 Apr;35(4 Suppl 1):28–34. doi: 10.1016/0026-0495(86)90184-8. [DOI] [PubMed] [Google Scholar]
- Mayhew T. M., Carson F. L. Mechanisms of adaptation in rat small intestine: regional differences in quantitative morphology during normal growth and experimental hypertrophy. J Anat. 1989 Jun;164:189–200. [PMC free article] [PubMed] [Google Scholar]
- McDonough A. A., Tang M. J., Lescale-Matys L. Ionic regulation of the biosynthesis of NaK-ATPase subunits. Semin Nephrol. 1990 Jul;10(4):400–409. [PubMed] [Google Scholar]
- Mogensen C. E., Steffes M. W., Deckert T., Christiansen J. S. Functional and morphological renal manifestations in diabetes mellitus. Diabetologia. 1981 Aug;21(2):89–93. doi: 10.1007/BF00251272. [DOI] [PubMed] [Google Scholar]
- Müller F., Beyreiss K., Dettmer D., Hartenstein H. Untersuchungen zur Wirkung des Alloxandiabetes auf die aktive Resorption von Monosacchariden. Acta Biol Med Ger. 1967;19(5):672–681. [PubMed] [Google Scholar]
- Noguchi S., Higashi K., Kawamura M. A possible role of the beta-subunit of (Na,K)-ATPase in facilitating correct assembly of the alpha-subunit into the membrane. J Biol Chem. 1990 Sep 15;265(26):15991–15995. [PubMed] [Google Scholar]
- Pierce G. N., Dhalla N. S. Sarcolemmal Na+-K+-ATPase activity in diabetic rat heart. Am J Physiol. 1983 Sep;245(3):C241–C247. doi: 10.1152/ajpcell.1983.245.3.C241. [DOI] [PubMed] [Google Scholar]
- Pressley L., Funder J. W. Glucocorticoid and mineralocorticoid receptors in gut mucosa. Endocrinology. 1975 Sep;97(3):588–596. doi: 10.1210/endo-97-3-588. [DOI] [PubMed] [Google Scholar]
- Price E. M., Lingrel J. B. Structure-function relationships in the Na,K-ATPase alpha subunit: site-directed mutagenesis of glutamine-111 to arginine and asparagine-122 to aspartic acid generates a ouabain-resistant enzyme. Biochemistry. 1988 Nov 1;27(22):8400–8408. doi: 10.1021/bi00422a016. [DOI] [PubMed] [Google Scholar]
- Resh M. D. Quantitation and characterization of the (Na+,K+)-adenosine triphosphatase in the rat adipocyte plasma membrane. J Biol Chem. 1982 Oct 25;257(20):11946–11952. [PubMed] [Google Scholar]
- Russo J. J., Manuli M. A., Ismail-Beigi F., Sweadner K. J., Edelman I. S. Na(+)-K(+)-ATPase in adipocyte differentiation in culture. Am J Physiol. 1990 Dec;259(6 Pt 1):C968–C977. doi: 10.1152/ajpcell.1990.259.6.C968. [DOI] [PubMed] [Google Scholar]
- Schedl H. P., Wilson H. D. Effects of diabetes on intestinal growth and hexose transport in the rat. Am J Physiol. 1971 Jun;220(6):1739–1745. doi: 10.1152/ajplegacy.1971.220.6.1739. [DOI] [PubMed] [Google Scholar]
- Schedl H. P., Wilson H. D. Effects of diabetes on intestinal growth in the rat. J Exp Zool. 1971 Apr;176(4):487–495. doi: 10.1002/jez.1401760410. [DOI] [PubMed] [Google Scholar]
- Smith J. B., Rozengurt E. Serum stimulates the Na+,K+ pump in quiescent fibroblasts by increasing Na+ entry. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5560–5564. doi: 10.1073/pnas.75.11.5560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sweadner K. J. Isozymes of the Na+/K+-ATPase. Biochim Biophys Acta. 1989 May 9;988(2):185–220. doi: 10.1016/0304-4157(89)90019-1. [DOI] [PubMed] [Google Scholar]
- Sweadner K. J. Overview: subunit diversity in the Na,K-ATPase. Soc Gen Physiol Ser. 1991;46:63–76. [PubMed] [Google Scholar]
- Tai Y. H., Decker R. A., Marnane W. G., Charney A. N., Donowitz M. Effects of methylprednisolone on electrolyte transport by in vitro rat ileum. Am J Physiol. 1981 May;240(5):G365–G370. doi: 10.1152/ajpgi.1981.240.5.G365. [DOI] [PubMed] [Google Scholar]
- Unger R. H. Glucagon and the insulin: glucagon ratio in diabetes and other catabolic illnesses. Diabetes. 1971 Dec;20(12):834–838. doi: 10.2337/diab.20.12.834. [DOI] [PubMed] [Google Scholar]
- Urayama O., Shutt H., Sweadner K. J. Identification of three isozyme proteins of the catalytic subunit of the Na,K-ATPase in rat brain. J Biol Chem. 1989 May 15;264(14):8271–8280. [PubMed] [Google Scholar]
- Young R. M., Shull G. E., Lingrel J. B. Multiple mRNAs from rat kidney and brain encode a single Na+,K+-ATPase beta subunit protein. J Biol Chem. 1987 Apr 5;262(10):4905–4910. [PubMed] [Google Scholar]




