Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1994 Jun;93(6):2764–2767. doi: 10.1172/JCI117293

Incorporation of chylomicron fatty acids into the developing rat brain.

G J Anderson 1, P S Tso 1, W E Connor 1
PMCID: PMC294539  PMID: 8201015

Abstract

The developing brain obtains polyunsaturated fatty acids from the circulation, but the mechanism and route of delivery of these fatty acids are undetermined. 14C-labeled chylomicrons were prepared by duodenal infusion of [1-14C]16:0, [1-14C]18:2(n-6), [1-14C]18:3(n-3), or [1-14C]22:6(n-3) into adult donor rats, and were individually injected into hepatectomized 2-wk-old suckling rats. After minor correction for trapped blood in the brain, the incorporation of chylomicron fatty acids after 30 min was nearly half that of a co-injected free fatty acid reference. [1-14C]22:6(n-3)-labeled chylomicrons showed an average 65% greater incorporation than chylomicrons prepared from the other fatty acids. This apparent selectivity may have been partly due to lower oxidation of 22:6(n-3) in the brain compared to the other fatty acids tested, based on recovered water-soluble oxidation products. The bulk of the radioactivity in the brain was found in phospholipid and triacylglycerol, except that animals injected with [1-14C]22:6(n-3) chylomicrons showed considerable incorporation also into the fatty acid fraction instead of triacylglycerol. These data show that chylomicrons may be an important source of fatty acids for the developing rat brain.

Full text

PDF
2764

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson G. J., Connor W. E. Uptake of fatty acids by the developing rat brain. Lipids. 1988 Apr;23(4):286–290. doi: 10.1007/BF02537334. [DOI] [PubMed] [Google Scholar]
  2. BRAGDON J. H., GORDON R. S., Jr Tissue distribution of C14 after the intravenous injection of labeled chylomicrons and unesterified fatty acids in the rat. J Clin Invest. 1958 Apr;37(4):574–578. doi: 10.1172/JCI103640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Belcher J. D., Rudel L. L., Waite M. Metabolism of radiolabelled chylomicron lipids in intact and hepatectomized rats. Comp Biochem Physiol B. 1985;81(1):87–96. doi: 10.1016/0305-0491(85)90166-x. [DOI] [PubMed] [Google Scholar]
  4. Brecher P., Kuan H. T. Lipoprotein lipase and acid lipase activity in rabbit brain microvessels. J Lipid Res. 1979 May;20(4):464–471. [PubMed] [Google Scholar]
  5. Calvo M., Naval J., Lampreave F., Uriel J., Piñeiro A. Fatty acids bound to alpha-fetoprotein and albumin during rat development. Biochim Biophys Acta. 1988 Apr 15;959(3):238–246. doi: 10.1016/0005-2760(88)90196-8. [DOI] [PubMed] [Google Scholar]
  6. Chajek T., Stein O., Stein Y. Pre- and post-natal development of lipoprotein lipase and hepatic triglyceride hydrolase activity in rat tissues. Atherosclerosis. 1977 Apr;26(4):549–561. doi: 10.1016/0021-9150(77)90122-8. [DOI] [PubMed] [Google Scholar]
  7. Chen I. S., Le T., Subramanian S., Cassidy M. M., Sheppard A. J., Vahouny G. V. Comparison of the clearances of serum chylomicron triglycerides enriched with eicosapentaenoic acid or oleic acid. Lipids. 1987 May;22(5):318–321. doi: 10.1007/BF02533999. [DOI] [PubMed] [Google Scholar]
  8. DeGeorge J. J., Nariai T., Yamazaki S., Williams W. M., Rapoport S. I. Arecoline-stimulated brain incorporation of intravenously administered fatty acids in unanesthetized rats. J Neurochem. 1991 Jan;56(1):352–355. doi: 10.1111/j.1471-4159.1991.tb02603.x. [DOI] [PubMed] [Google Scholar]
  9. Dhopeshwarkar G. A., Mead J. F. Uptake and transport of fatty acids into the brain and the role of the blood-brain barrier system. Adv Lipid Res. 1973;11(0):109–142. doi: 10.1016/b978-0-12-024911-4.50010-6. [DOI] [PubMed] [Google Scholar]
  10. Eckel R. H., Robbins R. J. Lipoprotein lipase is produced, regulated, and functional in rat brain. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7604–7607. doi: 10.1073/pnas.81.23.7604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ekström B., Nilsson A., Akesson B. Lipolysis of polyenoic fatty acid esters of human chylomicrons by lipoprotein lipase. Eur J Clin Invest. 1989 Jun;19(3):259–264. doi: 10.1111/j.1365-2362.1989.tb00228.x. [DOI] [PubMed] [Google Scholar]
  12. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  13. Florén C. H., Nilsson A. Effects of fatty acid unsaturation on chylomicron metabolism in normal and hepatectomized rats. Eur J Biochem. 1977 Jul 1;77(1):23–30. doi: 10.1111/j.1432-1033.1977.tb11636.x. [DOI] [PubMed] [Google Scholar]
  14. Hansen T. W., Bratlid D. Cerebral blood volumes in young rats with and without in situ saline flushing of cerebral vasculature. Implications for in vivo studies of brain substance uptake. Biol Neonate. 1989;56(1):15–21. doi: 10.1159/000242982. [DOI] [PubMed] [Google Scholar]
  15. Kishimoto Y., Davies W. E., Radin N. S. Developing rat brain: changes in cholesterol, galactolipids, and the individual fatty acids of gangliosides and glycerophosphatides. J Lipid Res. 1965 Oct;6(4):532–536. [PubMed] [Google Scholar]
  16. Laborda J., Naval J., Calvo M., Lampreave F., Uriel J. Alpha-fetoprotein and albumin uptake by mouse tissues during development. Biol Neonate. 1989;56(6):332–341. doi: 10.1159/000243142. [DOI] [PubMed] [Google Scholar]
  17. LeKim D., Betzing H. Uptake and metabolism of polyene phosphatidylcholine in rat brain. Arzneimittelforschung. 1984;34(5):557–559. [PubMed] [Google Scholar]
  18. Marbois B. N., Ajie H. O., Korsak R. A., Sensharma D. K., Edmond J. The origin of palmitic acid in brain of the developing rat. Lipids. 1992 Aug;27(8):587–592. doi: 10.1007/BF02536115. [DOI] [PubMed] [Google Scholar]
  19. Martin R. E., Bazan N. G. Changing fatty acid content of growth cone lipids prior to synaptogenesis. J Neurochem. 1992 Jul;59(1):318–325. doi: 10.1111/j.1471-4159.1992.tb08906.x. [DOI] [PubMed] [Google Scholar]
  20. Melin T., Qi C., Bengtsson-Olivecrona G., Akesson B., Nilsson A. Hydrolysis of chylomicron polyenoic fatty acid esters with lipoprotein lipase and hepatic lipase. Biochim Biophys Acta. 1991 Oct 31;1075(3):259–266. doi: 10.1016/0304-4165(91)90274-k. [DOI] [PubMed] [Google Scholar]
  21. Naval J., Calvo M., Laborda J., Dubouch P., Frain M., Sala-Trepat J. M., Uriel J. Expression of mRNAs for alpha-fetoprotein (AFP) and albumin and incorporation of AFP and docosahexaenoic acid in baboon fetuses. J Biochem. 1992 May;111(5):649–654. doi: 10.1093/oxfordjournals.jbchem.a123813. [DOI] [PubMed] [Google Scholar]
  22. Neuringer M., Anderson G. J., Connor W. E. The essentiality of n-3 fatty acids for the development and function of the retina and brain. Annu Rev Nutr. 1988;8:517–541. doi: 10.1146/annurev.nu.08.070188.002505. [DOI] [PubMed] [Google Scholar]
  23. Nilsson A., Landin B. Metabolism of chylomicron arachidonic and linoleic acid in the rat. Biochim Biophys Acta. 1988 Apr 15;959(3):288–295. doi: 10.1016/0005-2760(88)90202-0. [DOI] [PubMed] [Google Scholar]
  24. Nouvelot A., Bourre J. M., Sezille G., Dewailly P., Jaillard J. Changes in the fatty acid patterns of brain phospholipids during development of rats fed peanut or rapeseed oil, taking into account differences between milk and maternal food. Ann Nutr Metab. 1983;27(3):173–181. doi: 10.1159/000176649. [DOI] [PubMed] [Google Scholar]
  25. Nouvelot A., Delbart C., Bourre J. M. Hepatic metabolism of dietary alpha-linolenic acid in suckling rats, and its possible importance in polyunsaturated fatty acid uptake by the brain. Ann Nutr Metab. 1986;30(5):316–323. doi: 10.1159/000177209. [DOI] [PubMed] [Google Scholar]
  26. Pitas R. E., Boyles J. K., Lee S. H., Hui D., Weisgraber K. H. Lipoproteins and their receptors in the central nervous system. Characterization of the lipoproteins in cerebrospinal fluid and identification of apolipoprotein B,E(LDL) receptors in the brain. J Biol Chem. 1987 Oct 15;262(29):14352–14360. [PubMed] [Google Scholar]
  27. Ridgway N., Dolphin P. J. Lipoprotein lipase-mediated sequestration of long-chain polyunsaturated triacylglycerols in serum LDL from normal and hypothyroid rats. Biochim Biophys Acta. 1984 Oct 24;796(1):64–71. doi: 10.1016/0005-2760(84)90239-x. [DOI] [PubMed] [Google Scholar]
  28. Scott B. L., Bazan N. G. Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2903–2907. doi: 10.1073/pnas.86.8.2903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sinclair A. J., Crawford M. A. The accumulation of arachidonate and docosahexaenoate in the developing rat brain. J Neurochem. 1972 Jul;19(7):1753–1758. doi: 10.1111/j.1471-4159.1972.tb06219.x. [DOI] [PubMed] [Google Scholar]
  30. Sinclair A. J., Crawford M. A. The incorporation of linolenic aid and docosahexaenoic acid into liver and brain lipids of developing rats. FEBS Lett. 1972 Oct 1;26(1):127–129. doi: 10.1016/0014-5793(72)80557-x. [DOI] [PubMed] [Google Scholar]
  31. Thiés F., Delachambre M. C., Bentejac M., Lagarde M., Lecerf J. Unsaturated fatty acids esterified in 2-acyl-l-lysophosphatidylcholine bound to albumin are more efficiently taken up by the young rat brain than the unesterified form. J Neurochem. 1992 Sep;59(3):1110–1116. doi: 10.1111/j.1471-4159.1992.tb08353.x. [DOI] [PubMed] [Google Scholar]
  32. Vilaró S., Camps L., Reina M., Perez-Clausell J., Llobera M., Olivecrona T. Localization of lipoprotein lipase to discrete areas of the guinea pig brain. Brain Res. 1990 Jan 8;506(2):249–253. doi: 10.1016/0006-8993(90)91258-i. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES