Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Oct;144(1):1–6. doi: 10.1128/jb.144.1.1-6.1980

Inducible N-acetyglucosamine-binding protein in yeasts.

B Singh, M Biswas, A Datta
PMCID: PMC294572  PMID: 6998941

Abstract

Addition of N-acetylglucosamine (GlcNAc) to the medium elicits an immediate synthesis of a specific GlcNAc-binding protein in yeasts. Synthesis of this protein requires the continuous presence of GlcNAc as the inducer and is inhibited completely by the inhibitors of ribonucleic acid and protein syntheses. Furthermore, this protein has been partially purified from GlcNAc-grown Candida albicans cells and is quite distinct from the other induced enzymes of the GlcNAc catabolic pathway. A good correlation between the level of GlcNAc-binding protein and GlcNAc uptake capacity of the cells during induction was observed. Some of the sugars, e.g., N-acetylmannosamine, N-acetylgalactosamine, and glucose, had a similar competitive effect on the binding of GlcNAc as well as on its uptake. Furthermore, both the binding and uptake activities were sensitive to sulfhydryl reagents.

Full text

PDF
1

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baxter J. D., Tomkins G. M. Specific cytoplasmic glucocorticoid hormone receptors in hepatoma tissue culture cells. Proc Natl Acad Sci U S A. 1971 May;68(5):932–937. doi: 10.1073/pnas.68.5.932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhandari H. C., Hayashibe M. Utilization of hexoses in a fission yeast, Schizosaccharomyces pombe. IV. Purification and properties of hexose-binding proteins. J Biochem. 1977 Nov;82(5):1197–1204. doi: 10.1093/oxfordjournals.jbchem.a131806. [DOI] [PubMed] [Google Scholar]
  3. Bhattacharya A., Banerjee S., Datta A. Regulation of N-acetylglucosamine kinase synthesis in yeast. Biochim Biophys Acta. 1974 Dec 20;374(3):384–391. doi: 10.1016/0005-2787(74)90259-7. [DOI] [PubMed] [Google Scholar]
  4. Biswas M., Singh B., Datta A. Induction of N-acetylmannosamine catabolic pathway in yeast. Biochim Biophys Acta. 1979 Jul 18;585(4):535–542. doi: 10.1016/0304-4165(79)90186-7. [DOI] [PubMed] [Google Scholar]
  5. Datta A., de Haro C., Ochoa S. Translational control by hemin is due to binding to cyclic AMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1148–1152. doi: 10.1073/pnas.75.3.1148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jayakumar A., Singh M., Prasad R. Characteristics of proline transport in normal and starved cells of Candida albicans. Biochim Biophys Acta. 1978 Dec 19;514(2):348–355. doi: 10.1016/0005-2736(78)90304-8. [DOI] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Lee S. G., Lipmann F. Glucose binding and transport proteins extracted from fast-growing chicken fibroblasts. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5427–5431. doi: 10.1073/pnas.75.11.5427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Neu H. C., Heppel L. A. The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem. 1965 Sep;240(9):3685–3692. [PubMed] [Google Scholar]
  10. Newlon C. S., Fangman W. L. Mitochondrial DNA synthesis in cell cycle mutants of Saccharomyces cerevisiae. Cell. 1975 Aug;5(4):423–428. doi: 10.1016/0092-8674(75)90061-6. [DOI] [PubMed] [Google Scholar]
  11. Oxender D. L. Membrane transport. Annu Rev Biochem. 1972;41(10):777–814. doi: 10.1146/annurev.bi.41.070172.004021. [DOI] [PubMed] [Google Scholar]
  12. Pardee A. B. Purification and properties of a sulfate-binding protein from Salmonella typhimurium. J Biol Chem. 1966 Dec 25;241(24):5886–5892. [PubMed] [Google Scholar]
  13. Singh B. R., Datta A. Glucose repression of the inducible catabolic pathway for N-acetylglucosamine in yeast. Biochem Biophys Res Commun. 1978 Sep 14;84(1):58–64. doi: 10.1016/0006-291x(78)90262-0. [DOI] [PubMed] [Google Scholar]
  14. Singh B., Datta A. Induction of N-acetylglucosamine-catabolic pathway in spheroplasts of Candida albicans. Biochem J. 1979 Feb 15;178(2):427–431. doi: 10.1042/bj1780427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Singh B., Datta A. Regulation of N-acetylglucosamine uptake in yeast. Biochim Biophys Acta. 1979 Oct 19;557(1):248–258. doi: 10.1016/0005-2736(79)90107-x. [DOI] [PubMed] [Google Scholar]
  16. Singh B., Datta A. Regulation of glucosamine-6-phosphate deaminase synthesis in yeast. Biochim Biophys Acta. 1979 Feb 19;583(1):28–35. doi: 10.1016/0304-4165(79)90306-4. [DOI] [PubMed] [Google Scholar]
  17. Singh M., Jayakumar A., Prasad R. The effect of altered lipid composition on the transport of various amino acids in Candida albicans. Arch Biochem Biophys. 1978 Dec;191(2):680–686. doi: 10.1016/0003-9861(78)90407-1. [DOI] [PubMed] [Google Scholar]
  18. Tonnesen T., Friesen J. D. Inhibitors of ribonucleic acid synthesis in Saccharomyces cerevisiae: decay rate of messenger ribonucleic acid. J Bacteriol. 1973 Sep;115(3):889–896. doi: 10.1128/jb.115.3.889-896.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tsuyumu S., Adams B. G. Population analysis of the deinduction kinetics of galactose long-term adaptation mutants of yeast. Proc Natl Acad Sci U S A. 1973 Mar;70(3):919–923. doi: 10.1073/pnas.70.3.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. van Steveninck J. The influence of nickelous ions on carbohydrate transport in yeast cells. Biochim Biophys Acta. 1966 Sep 5;126(1):154–162. doi: 10.1016/0926-6585(66)90045-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES