Abstract
Hydrogenase activity was found in cells of Rhodopseudomonas capsulata strain B10 cultured under a variety of growth conditions either anaerobically in the light or aerobically in the dark. The highest activities were found routinely in cells grown in the presence of H2. The hydrogenase of R. capsulata was localized in the particulate fraction of the cells. High hydrogenase activities were usually observed in cells possessing an active nitrogenase. The hydrogen produced by the nitrogenase stimulated the activity of hydrogenase in growing cells. However, the synthesis of hydrogenase was not closely linked to the synthesis of nitrogenase. Hydrogenase was present in dark-grown cultures, whereas nitrogenase synthesis was not significant in the absence of light. Unlike nitrogenase, hydrogenase was present in cultures grown on NH4+. Conditions were established which allowed the synthesis of either nitrogenase or hydrogenase by resting cells. We concluded that hydrogenase can be synthesized independently of nitrogenase.
Full text
PDF![141](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08ff/294606/fcd750e1bcd2/jbacter00571-0155.png)
![142](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08ff/294606/aab34a5f781a/jbacter00571-0156.png)
![143](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08ff/294606/ba3bbb36ee9c/jbacter00571-0157.png)
![144](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08ff/294606/edd8a356a801/jbacter00571-0158.png)
![145](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08ff/294606/0fec32624bc5/jbacter00571-0159.png)
![146](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08ff/294606/a0333f3bd7c0/jbacter00571-0160.png)
![147](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08ff/294606/f17bbdb65388/jbacter00571-0161.png)
![148](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08ff/294606/63908a1c33d3/jbacter00571-0162.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bothe H., Distler E., Eisbrenner G. Hydrogen metabolism in blue-green algae. Biochimie. 1978;60(3):277–289. doi: 10.1016/s0300-9084(78)80824-4. [DOI] [PubMed] [Google Scholar]
- Chen J. S., Mortenson L. E. Purification and properties of hydrogenase from Clostridium pasteurianum W5. Biochim Biophys Acta. 1974 Dec 18;371(2):283–298. doi: 10.1016/0005-2795(74)90025-7. [DOI] [PubMed] [Google Scholar]
- Dixon R. O. Hydrogenase in legume root nodule bacteroids: occurrence and properties. Arch Mikrobiol. 1972;85(3):193–201. doi: 10.1007/BF00408844. [DOI] [PubMed] [Google Scholar]
- Dixon R. O. Nitrogenase--hydrogenase interrelationships in Rhizobia. Biochimie. 1978;60(3):233–236. doi: 10.1016/s0300-9084(78)80819-0. [DOI] [PubMed] [Google Scholar]
- GEST H. Metabolic patterns in photosynthetic bacteria. Bacteriol Rev. 1951 Dec;15(4):183–210. doi: 10.1128/br.15.4.183-210.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GEST H. Oxidation and evolution of molecular hydrogen by microorganisms. Bacteriol Rev. 1954 Mar;18(1):43–73. doi: 10.1128/br.18.1.43-73.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gest H., Kamen M. D. Photoproduction of Molecular Hydrogen by Rhodospirillum rubrum. Science. 1949 Jun 3;109(2840):558–559. doi: 10.1126/science.109.2840.558. [DOI] [PubMed] [Google Scholar]
- Gest H., Kamen M. D. STUDIES ON THE METABOLISM OF PHOTOSYNTHETIC BACTERIA IV. : Photochemical Production of Molecular Hydrogen by Growing Cultures of Photosynthetic Bacteria. J Bacteriol. 1949 Aug;58(2):239–245. [PMC free article] [PubMed] [Google Scholar]
- Hillmer P., Gest H. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. J Bacteriol. 1977 Feb;129(2):724–731. doi: 10.1128/jb.129.2.724-731.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hillmer P., Gest H. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells. J Bacteriol. 1977 Feb;129(2):732–739. doi: 10.1128/jb.129.2.732-739.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jouanneau Y., Kelley B. C., Berlier Y., Lespinat P. A., Vignais P. M. Continuous monitoring, by mass spectrometry, of H2 production and recycling in Rhodopseudomonas capsulata. J Bacteriol. 1980 Aug;143(2):628–636. doi: 10.1128/jb.143.2.628-636.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelley B. C., Meyer C. M., Gandy C., Vignais P. M. Hydrogen recycling by Rhodopseudomonas capsulata. FEBS Lett. 1977 Sep 15;81(2):281–285. doi: 10.1016/0014-5793(77)80535-8. [DOI] [PubMed] [Google Scholar]
- Klemme J. H. Untersuchungen zur Photoautotrophie mit molekularem Wasserstoff bei neuisolierten schwefelfreien Purpurbakterien. Arch Mikrobiol. 1968;64(1):29–42. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Madigan M. T., Gest H. Growth of the photosynthetic bacterium Rhodopseudomonas capsulata chemoautotrophically in darkness with H2 as the energy source. J Bacteriol. 1979 Jan;137(1):524–530. doi: 10.1128/jb.137.1.524-530.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer J., Kelley B. C., Vignais P. M. Effect of light nitrogenase function and synthesis in Rhodopseudomonas capsulata. J Bacteriol. 1978 Oct;136(1):201–208. doi: 10.1128/jb.136.1.201-208.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer J., Kelley B. C., Vignais P. M. Nitrogen fixation and hydrogen metabolism in photosynthetic bacteria. Biochimie. 1978;60(3):245–260. doi: 10.1016/s0300-9084(78)80821-9. [DOI] [PubMed] [Google Scholar]
- Paul F., Colbeau A., Vignais P. M. Phosphorylation coupled to H2 oxidation by chromatophores from Rhodopseudomonas capsulata. FEBS Lett. 1979 Oct 1;106(1):29–33. doi: 10.1016/0014-5793(79)80688-2. [DOI] [PubMed] [Google Scholar]
- Pfennig N. Photosynthetic bacteria. Annu Rev Microbiol. 1967;21:285–324. doi: 10.1146/annurev.mi.21.100167.001441. [DOI] [PubMed] [Google Scholar]
- Schneider K., Schlegel H. G. Localization and stability of hydrogenases from aerobic hydrogen bacteria. Arch Microbiol. 1977 Apr 1;112(3):229–238. doi: 10.1007/BF00413086. [DOI] [PubMed] [Google Scholar]
- Sim E., Vignais P. M. Hydrogenase activity in Paracoccus denitrificans. Partial purification and interaction with the electron transport chain. Biochimie. 1978;60(3):307–314. doi: 10.1016/s0300-9084(78)80827-x. [DOI] [PubMed] [Google Scholar]
- Smith L. A., Hill S., Yates M. G. Inhibition by acetylene of conventional hydrogenase in nitrogen-fixing bacteria. Nature. 1976 Jul 15;262(5565):209–210. doi: 10.1038/262209a0. [DOI] [PubMed] [Google Scholar]
- Tel-Or E., Luijk L. W., Packer L. Hydrogenase in N2-fixing cyanobacteria. Arch Biochem Biophys. 1978 Jan 15;185(1):185–194. doi: 10.1016/0003-9861(78)90158-3. [DOI] [PubMed] [Google Scholar]
- Walker C. C., Yates M. G. The hydrogen cycle in nitrogen-fixing Azotobacter chroococcum. Biochimie. 1978;60(3):225–231. doi: 10.1016/s0300-9084(78)80818-9. [DOI] [PubMed] [Google Scholar]
- Wall J. D., Weaver P. F., Gest H. Genetic transfer of nitrogenase-hydrogenase activity in Rhodopseudomonas capsulata. Nature. 1975 Dec 18;258(5536):630–631. doi: 10.1038/258630a0. [DOI] [PubMed] [Google Scholar]
- Weaver P. F., Wall J. D., Gest H. Characterization of Rhodopseudomonas capsulata. Arch Microbiol. 1975 Nov 7;105(3):207–216. doi: 10.1007/BF00447139. [DOI] [PubMed] [Google Scholar]