Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Oct;144(1):159–163. doi: 10.1128/jb.144.1.159-163.1980

Regulation of enzyme synthesis in the arginine deiminase pathway of Pseudomonas aeruginosa.

A Mercenier, J P Simon, C Vander Wauven, D Haas, V Stalon
PMCID: PMC294610  PMID: 6252188

Abstract

The three enzymes of the arginine deiminase pathway in Pseudomonas aeruginosa strain PAO were induced strongly (50- to 100-fold) by a shift from aerobic growth conditions to very low oxygen tension. Arginine in the culture medium was not essential for induction, but increased the maximum enzyme levels twofold. The induction of the three enzymes arginine deiminase (EC 3.5.3.6), catabolic ornithine carbamoyltransferase (EC 2.1.3.3), and carbamate kinase (EC 2.7.2.3) appeared to be coordinate. Catabolic ornithine carbamoyltransferase was studied in most detail. Nitrate and nitrite, which can replace oxygen as terminal electron acceptors in P. aeruginosa, partially prevented enzyme induction by low oxygen tension in the wild-type strain, but not in nar (nitrate reductase-negative) mutants. Glucose was found to exert catabolite repression of the deiminase pathway. Generally, conditions of stress, such as depletion of the carbon and energy source or the phosphate source, resulted in induced synthesis of catabolic ornithine carbamoyltransferase. The induction of the deiminase pathway is thought to mobilize intra- and extracellular reserves of arginine, which is used as a source of adenosine 5'-triphosphate in the absence of respiration.

Full text

PDF
159

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdelal A. T. Arginine catabolism by microorganisms. Annu Rev Microbiol. 1979;33:139–168. doi: 10.1146/annurev.mi.33.100179.001035. [DOI] [PubMed] [Google Scholar]
  2. Atkinson D. E. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry. 1968 Nov;7(11):4030–4034. doi: 10.1021/bi00851a033. [DOI] [PubMed] [Google Scholar]
  3. Broman K., Lauwers N., Stalon V., Wiame J. M. Oxygen and nitrate in utilization by Bacillus licheniformis of the arginase and arginine deiminase routes of arginine catabolism and other factors affecting their syntheses. J Bacteriol. 1978 Sep;135(3):920–927. doi: 10.1128/jb.135.3.920-927.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hass D., Evans R., Mercenier A., Simon J. P., Stalon V. Genetic and physiological characterization of Pseudomonas aeruginosa mutants affected in the catabolic ornithine carbamoyltransferase. J Bacteriol. 1979 Sep;139(3):713–720. doi: 10.1128/jb.139.3.713-720.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Holloway B. W. Genetics of Pseudomonas. Bacteriol Rev. 1969 Sep;33(3):419–443. doi: 10.1128/br.33.3.419-443.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kight-Olliff L. C., Fitzgerald J. W. Inhibition of enzyme induction in Pseudomonas aeruginosa by exogenous nucleotides. Can J Microbiol. 1978 Jul;24(7):811–817. doi: 10.1139/m78-136. [DOI] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Mercenier A., Simon J. P., Haas D., Stalon V. Catabolism of L-arginine by Pseudomonas aeruginosa. J Gen Microbiol. 1980 Feb;116(2):381–389. doi: 10.1099/00221287-116-2-381. [DOI] [PubMed] [Google Scholar]
  9. Ng F. M., Dawes E. A. Chemostat studies on the regulation of glucose metabolism in Pseudomonas aeruginosa by citrate. Biochem J. 1973 Feb;132(2):129–140. doi: 10.1042/bj1320129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. SHOESMITH J. H., SHERRIS J. C. Studies on the mechanism of arginine-activated motility in a Pseudomonas strain. J Gen Microbiol. 1960 Feb;22:10–24. doi: 10.1099/00221287-22-1-10. [DOI] [PubMed] [Google Scholar]
  11. Smyth P. F., Clarke P. H. Catabolite repression of Pseudomonas aeruginosa amidase: the effect of carbon source on amidase synthesis. J Gen Microbiol. 1975 Sep;90(1):81–90. doi: 10.1099/00221287-90-1-81. [DOI] [PubMed] [Google Scholar]
  12. Stalon V., Ramos F., Piérard A., Wiame J. M. Regulation of the catabolic ornithine carbamoyltransferase of Pseudomonas fluorescens. A comparison with the anabolic transferase and with a mutationally modified catabolic transferase. Eur J Biochem. 1972 Aug 18;29(1):25–35. doi: 10.1111/j.1432-1033.1972.tb01953.x. [DOI] [PubMed] [Google Scholar]
  13. Stalon V., Ramos F., Piérard A., Wiame J. M. The occurrence of a catabolic and an anabolic ornithine carbamoyltransferase in Pseudomonas. Biochim Biophys Acta. 1967 May 16;139(1):91–97. doi: 10.1016/0005-2744(67)90115-5. [DOI] [PubMed] [Google Scholar]
  14. Van Hartingsveldt J., Marinus M. G., Stouthamer A. H. Mutants of Pseudomonas aeruginosa bblocked in nitrate or nitrite dissimilation. Genetics. 1971 Apr;67(4):469–482. doi: 10.1093/genetics/67.4.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Voellmy R., Leisinger T. Regulation of enzyme synthesis in the arginine biosynthetic pathway of Pseudomonas aeruginosa. J Gen Microbiol. 1978 Nov;109(1):25–35. doi: 10.1099/00221287-109-1-25. [DOI] [PubMed] [Google Scholar]
  16. Wiebe W. J., Bancroft K. Use of the adenylate energy charge ratio to measure growth state of natural microbial communities. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2112–2115. doi: 10.1073/pnas.72.6.2112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Williams D. R., Rowe J. J., Romero P., Eagon R. G. Denitrifying Pseudomonas aeruginosa: some parameters of growth and active transport. Appl Environ Microbiol. 1978 Aug;36(2):257–263. doi: 10.1128/aem.36.2.257-263.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. van Hartingsveldt J., Stouthamer A. H. Mapping and characerization of mutants of Pseudomonas aeruginosa affected in nitrate respiration in aerobic or anaerobic growth. J Gen Microbiol. 1973 Jan;74(1):97–106. doi: 10.1099/00221287-74-1-97. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES