Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Oct;144(1):217–221. doi: 10.1128/jb.144.1.217-221.1980

Effect of environmental pH on fermentation balance of Lactobacillus bulgaricus.

S K Rhee, M Y Pack
PMCID: PMC294626  PMID: 7419489

Abstract

When Lactobacillus bulgaricus NLS-4 was grown anaerobically in continuous culture with limiting glucose, a shift in the pH of the medium from the acidic to the alkaline range caused this normally homofermentative bacterium to catabolize glucose in a heterofermentative fashion. The change in the nature of the fermentation was accompanied by a decrease in lactate dehydrogenase biosynthesis in alkaline conditions. The lactate dehydrogenase from this organism did not require fructose 1,6-diphosphate or manganese ions (Mn2+) for catalytic activity. Involvement of the phosphoroclastic split in the pyruvate conversion in an alkaline environment was also confirmed. The high lactate dehydrogenase synthesis in acidic medium together with the participation of the phosphoroclastic split under alkaline conditions may explain the shift from homolactic to heterolactic fermentation of L. bulgaricus NLS-4 with the change of environmental pH.

Full text

PDF
217

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAUCHOP T., ELSDEN S. R. The growth of micro-organisms in relation to their energy supply. J Gen Microbiol. 1960 Dec;23:457–469. doi: 10.1099/00221287-23-3-457. [DOI] [PubMed] [Google Scholar]
  2. Brown A. T., Wittenberger C. L. Fructose-1,6-diphosphate-dependent lactate dehydrogenase from a cariogenic streptococcus: purification and regulatory properties. J Bacteriol. 1972 May;110(2):604–615. doi: 10.1128/jb.110.2.604-615.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carlsson J., Griffith C. J. Fermentation products and bacterial yields in glucose-limited and nitrogen-limited cultures of streptococci. Arch Oral Biol. 1974 Dec;19(12):1105–1109. doi: 10.1016/0003-9969(74)90238-6. [DOI] [PubMed] [Google Scholar]
  4. Dirar H., Collins E. B. End-products, fermentation balances and molar growth yields of homofermentative lactobacilli. J Gen Microbiol. 1972 Nov;73(2):233–238. doi: 10.1099/00221287-73-2-233. [DOI] [PubMed] [Google Scholar]
  5. GUNSALUS I. C., HORECKER B. L., WOOD W. A. Pathways of carbohydrate metabolism in microorganisms. Bacteriol Rev. 1955 Jun;19(2):79–128. doi: 10.1128/br.19.2.79-128.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gasser F., Doudoroff M., Contopoulos R. Purification and properties of NAD-dependent lactic dehydrogenases of different species of lactobacillus. J Gen Microbiol. 1970 Aug;62(2):241–250. doi: 10.1099/00221287-62-2-241. [DOI] [PubMed] [Google Scholar]
  7. Hibbert F., Kyrtopoulos S. A., Satchell D. P. Kinetic studies with phosphotransacetylase. Biochim Biophys Acta. 1971 Jul 21;242(1):39–54. doi: 10.1016/0005-2744(71)90086-6. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Lindmark D. G., Paolella P., Wood N. P. The pyruvate formate-lyase system of Streptococcus faecalis. I. Purification and properties of the formate-pyruvate exchange enzyme. J Biol Chem. 1969 Jul 10;244(13):3605–3612. [PubMed] [Google Scholar]
  10. London J. The ecology and taxonomic status of the lactobacilli. Annu Rev Microbiol. 1976;30:279–301. doi: 10.1146/annurev.mi.30.100176.001431. [DOI] [PubMed] [Google Scholar]
  11. PLATT T. B., FOSTER E. M. Products of glucose metabolism by homofermentative streptococci under anaerobic conditions. J Bacteriol. 1958 Apr;75(4):453–459. doi: 10.1128/jb.75.4.453-459.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rudolph F. B., Purich D. L., Fromm H. J. Coenzyme A-linked aldehyde dehydrogenase from Escherichia coli. I. Partial purification, properties, and kinetic studies of the enzyme. J Biol Chem. 1968 Nov 10;243(21):5539–5545. [PubMed] [Google Scholar]
  13. Satchell D. P., White G. F. Kinetic studies with acetate kinase. Biochim Biophys Acta. 1970 Aug 15;212(2):248–256. doi: 10.1016/0005-2744(70)90205-6. [DOI] [PubMed] [Google Scholar]
  14. Thomas T. D., Ellwood D. C., Longyear V. M. Change from homo- to heterolactic fermentation by Streptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures. J Bacteriol. 1979 Apr;138(1):109–117. doi: 10.1128/jb.138.1.109-117.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. WHITE A. G., STEELE R. H., PIERCE W. A., Jr The effect of pH on the fermentation of glucose and galactose by Streptococcus pyogenes. J Bacteriol. 1955 Jul;70(1):82–86. doi: 10.1128/jb.70.1.82-86.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. WOLIN M. J. FRUCTOSE-1,6-DIPHOSPHATE REQUIREMENT OF STREPTOCOCCAL LACTIC DEHYDROGENASES. Science. 1964 Nov 6;146(3645):775–777. doi: 10.1126/science.146.3645.775. [DOI] [PubMed] [Google Scholar]
  17. Wittenberger C. L., Angelo N. Purificationa and properties of a fructose-1,6-diphosphate-activated lactate dehydrogenase from Streptococcus faecalis. J Bacteriol. 1970 Mar;101(3):717–724. doi: 10.1128/jb.101.3.717-724.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. de Vries W., Kapteijn W. M., van der Beek E. G., Stouthamer A. H. Molar growth yields and fermentation balances of Lactobacillus casei L3 in batch cultures and in continuous cultures. J Gen Microbiol. 1970 Nov;63(3):333–345. doi: 10.1099/00221287-63-3-333. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES