Abstract
Superoxide dismutase activity in crude or partially purified cell extracts from several species and strains of obligate anaerobe Bacteroides was inhibited instantaneously by NaN3 and was inactivated rapidly upon incubation with H2O2. The extent of NaN3 inhibition varied from 41 to 93%, and the half-life of the enzymatic activity in 5 mM H2O2 ranged from 1.2 to 6.1 min, depending upon the organism tests. When grown in a defined medium containing 59Fe, Bacteroides fragilis (VPI 2393) incorporated radiolabel into a 40,000-molecular-weight NaN3- and H2O2-sensitive superoxide dismutase but did not incorporate 54Mn into that protein under similar growth conditions. The anaerobe Actinomyces naeslundii (VPI 9985) incorporated 54Mn but not 59Fe into a NaN3-insensitive and H2O2-resistant superoxide dismutase. The apparent molecular weight of the superoxide dismutase from this and several other Actinomyces spp. was estimated to be 110,000 to 140,000. Comparison of these data with studies of homogeneous metallosuperoxide dismutases suggests that the Bacteroides spp. studied contain a ferrisuperoxide dismutase, whereas Actinomyces spp. contain a managanisuperoxide dismutase.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BEERS R. F., Jr, SIZER I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952 Mar;195(1):133–140. [PubMed] [Google Scholar]
- Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971 Nov;44(1):276–287. doi: 10.1016/0003-2697(71)90370-8. [DOI] [PubMed] [Google Scholar]
- Bruschi M., Hatchikian E. C., Bonicel J., Bovier-Lapierre G., Couchoud P. The N-terminal sequence of superoxide dismutase from the strict anaerobe Desulfovibrio desulfuricans. FEBS Lett. 1977 Apr 1;76(1):121–124. doi: 10.1016/0014-5793(77)80134-8. [DOI] [PubMed] [Google Scholar]
- DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
- Fridovich I. Superoxide dismutases. Annu Rev Biochem. 1975;44:147–159. doi: 10.1146/annurev.bi.44.070175.001051. [DOI] [PubMed] [Google Scholar]
- Gregory E. M., Moore W. E., Holdeman L. V. Superoxide dismutase in anaerobes: survey. Appl Environ Microbiol. 1978 May;35(5):988–991. doi: 10.1128/aem.35.5.988-991.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haffner P. H., Coleman J. E. Cu (II)-carbon bonding in cyanide complexes of copper enzymes. 13C splitting of the Cu(II) electron spin resonance. J Biol Chem. 1973 Oct 10;248(19):6626–6629. [PubMed] [Google Scholar]
- Hatchikian E. C., Henry Y. A. An iron-containing superoxide dismutase from the strict anaerobe Desulfovibrio desulfuricans (Norway 4). Biochimie. 1977;59(2):153–161. doi: 10.1016/s0300-9084(77)80286-1. [DOI] [PubMed] [Google Scholar]
- Hewitt J., Morris J. G. Superoxide dismutase in some obligately anaerobic bacteria. FEBS Lett. 1975 Feb 15;50(3):315–318. doi: 10.1016/0014-5793(75)80518-7. [DOI] [PubMed] [Google Scholar]
- Hodgson E. K., Fridovich I. The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of the enzyme. Biochemistry. 1975 Dec 2;14(24):5294–5299. doi: 10.1021/bi00695a010. [DOI] [PubMed] [Google Scholar]
- Kanematsu S., Asada K. Crystalline ferric superoxide dismutase from an anaerobic green sulfur bacterium, Chlorobium thiosulfatophilum. FEBS Lett. 1978 Jul 1;91(1):94–98. doi: 10.1016/0014-5793(78)80025-8. [DOI] [PubMed] [Google Scholar]
- Kanematsu S., Asada K. Superoxide dismutase from an anaerobic photosynthetic bacterium, Chromatium vinosum. Arch Biochem Biophys. 1978 Jan 30;185(2):473–482. doi: 10.1016/0003-9861(78)90191-1. [DOI] [PubMed] [Google Scholar]
- Keele B. B., Jr, McCord J. M., Fridovich I. Superoxide dismutase from escherichia coli B. A new manganese-containing enzyme. J Biol Chem. 1970 Nov 25;245(22):6176–6181. [PubMed] [Google Scholar]
- McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
- Misra H. P., Fridovich I. Inhibition of superoxide dismutases by azide. Arch Biochem Biophys. 1978 Aug;189(2):317–322. doi: 10.1016/0003-9861(78)90218-7. [DOI] [PubMed] [Google Scholar]
- Privalle C. T., Gregory E. M. Superoxide dismutase and O2 lethality in Bacteroides fragilis. J Bacteriol. 1979 Apr;138(1):139–145. doi: 10.1128/jb.138.1.139-145.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tally F. P., Goldin B. R., Jacobus N. V., Gorbach S. L. Superoxide dismutase in anaerobic bacteria of clinical significance. Infect Immun. 1977 Apr;16(1):20–25. doi: 10.1128/iai.16.1.20-25.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Varel V. H., Bryant M. P. Nutritional features of Bacteroides fragilis subsp. fragilis. Appl Microbiol. 1974 Aug;28(2):251–257. doi: 10.1128/am.28.2.251-257.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yost F. J., Jr, Fridovich I. An iron-containing superoxide dismutase from Escherichia coli. J Biol Chem. 1973 Jul 25;248(14):4905–4908. [PubMed] [Google Scholar]
