Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Dec;144(3):1003–1008. doi: 10.1128/jb.144.3.1003-1008.1980

Mechanism of Haemophilus influenzae transfection by single and double prophage deoxyribonucleic acid.

J H Stuy
PMCID: PMC294764  PMID: 6969255

Abstract

Whole phages HP1 and HP3, vegetative-phage deoxyribonucleic acid (DNA), and single and tandem double prophage DNA were exposed to ultraviolet radiation and then assayed on a wild-type (DNA repair-proficient) Haemophilus influenzae Rd strain and on a repair-deficient uvr-1 strain. Host cell reactivation (DNA repair) was observed for whole-phage and vegetative-phage DNA but not for single and double prophage DNA. Competent (phage-resistant) Haemophilus parainfluenzae cells were normally transfected with H. influenzae-grown phage DNA and with tandem double prophage DNA but not at all with single prophage DNA. CaCl2-treated H. influenzae suspensions could be transfected with vegetative phage DNA and with double prophage DNA but not with single prophage DNA. These observations support the hypothesis that transfection with single prophage DNA occurs through prophage DNA single-strand insertion into the recipient chromosome (at the bacterial att site) followed by DNA replication and then prophage induction.

Full text

PDF
1003

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bagci H., Stuy J. H. A hex mutant of Haemophilus influenzae. Mol Gen Genet. 1979 Sep;175(2):175–179. doi: 10.1007/BF00425533. [DOI] [PubMed] [Google Scholar]
  2. Barnhart B. J., Cox S. H. Radiation-sensitive and radiation-resistant mutants of Haemophilus influenzae. J Bacteriol. 1968 Jul;96(1):280–282. doi: 10.1128/jb.96.1.280-282.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boling M. E., Setlow J. K., Allison D. P. Bacteriophage of Haemophilus influenzae. I. Differences between infection by whole phage, extracted phage DNA and prophage DNA extracted from lysogenic cells. J Mol Biol. 1972 Feb 14;63(3):335–348. doi: 10.1016/0022-2836(72)90431-7. [DOI] [PubMed] [Google Scholar]
  4. Flock J. I. Transfection with replicating DNA from the temperate Bacillus bacteriophage phi 105 and with T4-ligase treated phi105 DNA: the importance in transfection of being longer than genome-length. Mol Gen Genet. 1978 Jul 6;163(1):7–15. doi: 10.1007/BF00268958. [DOI] [PubMed] [Google Scholar]
  5. HARM W., RUPERT C. S. INFECTION OF TRANSFORMABLE CELLS OF HAEMOPHILUS INFLUENZAE BY BACTERIOPHAGE AND BACTERIOPHAGE DNA. Z Vererbungsl. 1963 Dec 30;94:336–348. doi: 10.1007/BF00897593. [DOI] [PubMed] [Google Scholar]
  6. Notani N. K., Setlow J. K., Allison D. P. Intracellular events during infection by Haemophilus influenzae phage and transfection by its DNA. J Mol Biol. 1973 Apr 25;75(4):581–599. doi: 10.1016/0022-2836(73)90293-3. [DOI] [PubMed] [Google Scholar]
  7. Notani N. K., Setlow J. K. Molecular events accompanying the fixation of genetic information in Haemophilus heterospecific transformation. J Bacteriol. 1972 Nov;112(2):751–760. doi: 10.1128/jb.112.2.751-760.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. STUY J. H. Transformability of Haemophilus influenzae. J Gen Microbiol. 1962 Nov;29:537–549. doi: 10.1099/00221287-29-3-537. [DOI] [PubMed] [Google Scholar]
  9. Setlow J. K., Boling M. E. Bacteriophage of Haemophilus influenzae. II. Repair of ultraviolet-irradiated phage DNA and the capacity of irradiated cells to make phage. J Mol Biol. 1972 Feb 14;63(3):349–362. doi: 10.1016/0022-2836(72)90432-9. [DOI] [PubMed] [Google Scholar]
  10. Setlow J. K., Brown D. C., Boling M. E., Mattingly A., Gordon M. P. Repair of deoxyribonucleic acid in Haemophilus influenzae. I. X-ray sensitivity of ultraviolet-sensitive mutants and their behavior as hosts to ultraviolet-irradiated bacteriophage and transforming deoxyribonucleic acid. J Bacteriol. 1968 Feb;95(2):546–558. doi: 10.1128/jb.95.2.546-558.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Strike P., Humphreys G. O., Roberts R. J. Nature of transforming deoxyribonucleic acid in calcium-treated Escherichia coli. J Bacteriol. 1979 Jun;138(3):1033–1035. doi: 10.1128/jb.138.3.1033-1035.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Stuy J. H. Chromosomally integrated conjugative plasmids are common in antibiotic-resistant Haemophilus influenzae. J Bacteriol. 1980 Jun;142(3):925–930. doi: 10.1128/jb.142.3.925-930.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Stuy J. H. Fate of transforming bacteriophage HP1 deoxyribonucleic acid in Haemophilus influenzae lysogens. J Bacteriol. 1975 Jun;122(3):1038–1044. doi: 10.1128/jb.122.3.1038-1044.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Stuy J. H., Hoffmann J. F., Duket L. H. Chromosomal recombination in Haemophilus influenzae. Genetics. 1972 Aug;71(4):507–520. doi: 10.1093/genetics/71.4.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Stuy J. H., Hoffmann J. F. Influence of transformability on the formation of superinfection double lysogens in Haemophilus influenzae. J Virol. 1971 Jan;7(1):127–136. doi: 10.1128/jvi.7.1.127-136.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stuy J. H. Mechanism of additive genetic transformation in Haemophilus influenzae. J Bacteriol. 1980 Dec;144(3):999–1002. doi: 10.1128/jb.144.3.999-1002.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stuy J. H. On the nature of nontypable Haemophilus influenzae. Antonie Van Leeuwenhoek. 1978;44(3-4):367–376. doi: 10.1007/BF00394313. [DOI] [PubMed] [Google Scholar]
  18. Stuy J. H. Origin and direction of Haemophilus bacteriophage HP1 DNA replication. J Virol. 1974 Mar;13(3):757–759. doi: 10.1128/jvi.13.3.757-759.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Stuy J. H. Plasmid transfer in Haemophilus influenzae. J Bacteriol. 1979 Aug;139(2):520–529. doi: 10.1128/jb.139.2.520-529.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stuy J. H. Restriction enzymes do not play a significant role in Haemophilus homospecific or heterospecific transformation. J Bacteriol. 1976 Oct;128(1):212–220. doi: 10.1128/jb.128.1.212-220.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yasbin R. E., Fernwalt J. D., Fields P. I. DNA repair in Bacillus subtilis: excision repair capacity of competent cells. J Bacteriol. 1979 Jan;137(1):391–396. doi: 10.1128/jb.137.1.391-396.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES