Abstract
Permeabilized cells able to induce prophage were obtained by plasmolysis and preincubation of the cells in a reaction mixture which allows protein synthesis. These cells became permeable to low-molecular-weight proteins and oligonucleotides. We found that deoxyribonucleases (pancreatic deoxyribonuclease and micrococcal nuclease) triggered prophage (phi 80) induction. This deoxyribonuclease-triggered induction was completely dependent upon the presence of functional recBC genes in the lysogen, regardless of the recombination proficiency determined by recBC and sbcB genes. The possible role of recBC-deoxyribonuclease in prophage induction and recombination is discussed.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Dharmalingam K., Goldberg E. B. Restriction in vivo. V. Introduction of SOS functions in Escherichia coli by restricted T4 phage DNA, and alleviation of restriction by SOS functions. Mol Gen Genet. 1980 Apr;178(1):51–58. doi: 10.1007/BF00267212. [DOI] [PubMed] [Google Scholar]
- Gudas L. J., Pardee A. B. Model for regulation of Escherichia coli DNA repair functions. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2330–2334. doi: 10.1073/pnas.72.6.2330. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kushner S. R., Nagaishi H., Templin A., Clark A. J. Genetic recombination in Escherichia coli: the role of exonuclease I. Proc Natl Acad Sci U S A. 1971 Apr;68(4):824–827. doi: 10.1073/pnas.68.4.824. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MARGOLIN P. Genetic fine structure of the leucine operon in Salmonella. Genetics. 1963 Mar;48:441–457. doi: 10.1093/genetics/48.3.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oishi M., Smith C. L., Friefeld B. Molecular events and molecules that lead to induction of prophage and SOS functions. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 2):897–907. doi: 10.1101/sqb.1979.043.01.098. [DOI] [PubMed] [Google Scholar]
- Oishi M., Smith C. L. Inactivation of phage repressor in a permeable cell system: role of recBC DNase in induction. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3569–3573. doi: 10.1073/pnas.75.8.3569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimizu K., Sekiguchi M. Introduction of an active enzyme into permeable cells of Escherichia coli: acquisition of ultraviolet light resistance by uvr mutants on introduction of T4 endonuclease V. Mol Gen Genet. 1979 Jan 5;168(1):37–47. doi: 10.1007/BF00267931. [DOI] [PubMed] [Google Scholar]
- Smith C. L., Oishi M. Early events and mechanisms in the induction of bacterial SOS functions: analysis of the phage repressor inactivation process in vivo. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1657–1661. doi: 10.1073/pnas.75.4.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith C. L., Oishi M. The molecular mechanism of virus induction. I. A procedure for the biochemical assay of prophage induction. Mol Gen Genet. 1976 Oct 18;148(2):131–138. doi: 10.1007/BF00268376. [DOI] [PubMed] [Google Scholar]
- Witkin E. M. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev. 1976 Dec;40(4):869–907. doi: 10.1128/br.40.4.869-907.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamamoto M., Ishizawa M., Endo H. Ribonucleic acid-permeable mutant of Escherichia coli. J Mol Biol. 1971 May 28;58(1):103–115. doi: 10.1016/0022-2836(71)90235-x. [DOI] [PubMed] [Google Scholar]