Abstract
To investigate whether ion currents help to localize growth and development of Blastocladiella emersonii, we grew the organisms in gradients of various ionophores and inhibitors. Gradients were generated by placing into the culture fine glass fibers coated with insoluble inhibitors; in some cases, inhibitors were adsorbed onto beads of ion-exchange resin. Organisms growing in many of these gradients exhibited a striking tendency for the thalli to grow toward the fiber. This proved to be misleading; the cells grew not toward the source of the ionophore but into the unoccupied zone of inhibition adjacent to the fiber. Fibers coated with gramicidin-D induced marked effects on the growth of the rhizoids, which were greatly enlarged and grew toward and onto the fiber. None of the other inhibitors produced such effects, except for beads coated with the proton conductors tetrachlorosalicylanilide and compound 1799. The results suggest that orientation of rhizoid growth results from enhancement of proton flux across the plasma membrane. Growth of the rhizoids was also strongly oriented by gradients of inorganic phosphate and an amino acid mixture; gradients of glucose, K+, Ca2+, and glutamate were ineffective. We propose that a major physiological function of the rhizoid is to transport nutrients to the thallus. Finally, we examined the effects of a series of benzimidazole antitubulins as well as the cytochalasins. These did not orient growth but grossly perturbed the pattern of cellular organization, producing small spherical cells with multiple stunted rhizoids. The findings are interpreted in terms of the interaction of an endogenous transcellular proton current with elements of the cytoskeleton in the determination of form.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Davidse L. C., Flach W. Interaction of thiabendazole with fungal tubulin. Biochim Biophys Acta. 1978 Sep 21;543(1):82–90. doi: 10.1016/0304-4165(78)90456-7. [DOI] [PubMed] [Google Scholar]
- Friedman P. A., Platzer E. G. Interaction of anthelmintic benzimidazoles and benzimidazole derivatives with bovine brain tubulin. Biochim Biophys Acta. 1978 Dec 18;544(3):605–614. doi: 10.1016/0304-4165(78)90334-3. [DOI] [PubMed] [Google Scholar]
- Giddings T. H., Jr, Brower D. L., Staehelin L. A. Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. J Cell Biol. 1980 Feb;84(2):327–339. doi: 10.1083/jcb.84.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harold F. M. Ion currents and physiological functions in microorganisms. Annu Rev Microbiol. 1977;31:181–203. doi: 10.1146/annurev.mi.31.100177.001145. [DOI] [PubMed] [Google Scholar]
- Hoebeke J., Van Nijen G., De Brabander M. Interaction of oncodazole (R 17934), a new antitumoral drug, with rat brain tubulin. Biochem Biophys Res Commun. 1976 Mar 22;69(2):319–324. doi: 10.1016/0006-291x(76)90524-6. [DOI] [PubMed] [Google Scholar]
- Jaffe L. F. Control of development by ionic currents. Soc Gen Physiol Ser. 1979;33:199–231. [PubMed] [Google Scholar]
- Jaffe L. F. Localization in the developing Fucus egg and the general role of localizing currents. Adv Morphog. 1968;7:295–328. doi: 10.1016/b978-1-4831-9954-2.50012-4. [DOI] [PubMed] [Google Scholar]
- Jaffe L. F., Nuccitelli R. An ultrasensitive vibrating probe for measuring steady extracellular currents. J Cell Biol. 1974 Nov;63(2 Pt 1):614–628. doi: 10.1083/jcb.63.2.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaffe L. F., Nuccitelli R. Electrical controls of development. Annu Rev Biophys Bioeng. 1977;6:445–476. doi: 10.1146/annurev.bb.06.060177.002305. [DOI] [PubMed] [Google Scholar]
- Liu C., Hermann T. E. Characterization of ionomycin as a calcium ionophore. J Biol Chem. 1978 Sep 10;253(17):5892–5894. [PubMed] [Google Scholar]
- Lovett J. S. Growth and differentiation of the water mold Blastocladiella emersonii: cytodifferentiation and the role of ribonucleic acid and protein synthesis. Bacteriol Rev. 1975 Dec;39(4):345–404. doi: 10.1128/br.39.4.345-404.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nuccitelli R. Oöplasmic segregation and secretion in the Pelvetia egg is accompanied by a membrane-generated electrical current. Dev Biol. 1978 Jan;62(1):13–33. doi: 10.1016/0012-1606(78)90089-1. [DOI] [PubMed] [Google Scholar]
- Peng H. B., Jaffe L. F. Polarization of fucoid eggs by steady electrical fields. Dev Biol. 1976 Oct 15;53(2):277–284. doi: 10.1016/0012-1606(76)90229-3. [DOI] [PubMed] [Google Scholar]
- Pressman B. C. Biological applications of ionophores. Annu Rev Biochem. 1976;45:501–530. doi: 10.1146/annurev.bi.45.070176.002441. [DOI] [PubMed] [Google Scholar]
- Robinson K. R., Cone R. Polarization of fucoid eggs by a calcium ionophore gradient. Science. 1980 Jan 4;207(4426):77–78. doi: 10.1126/science.207.4426.77. [DOI] [PubMed] [Google Scholar]
- STADLER D. R. Chemotropism in Rhizopus nigricans; the staling reaction. J Cell Physiol. 1952 Jun;39(3):449–474. doi: 10.1002/jcp.1030390308. [DOI] [PubMed] [Google Scholar]
- Soll D. R., Bromberg R., Sonneborn D. R. Zoospore germination in the water mold. Blastocladiella emersonii. I. Measurement of germination and sequence of subcellular morphological changes. Dev Biol. 1969 Sep;20(3):183–217. doi: 10.1016/0012-1606(69)90012-8. [DOI] [PubMed] [Google Scholar]
- Van Brunt J., Harold F. M. Ionic control of germination of Blastocladiella emersonii zoospores. J Bacteriol. 1980 Feb;141(2):735–744. doi: 10.1128/jb.141.2.735-744.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weisenseel M. H., Dorn A., Jaffe L. F. Natural H Currents Traverse Growing Roots and Root Hairs of Barley (Hordeum vulgare L.). Plant Physiol. 1979 Sep;64(3):512–518. doi: 10.1104/pp.64.3.512. [DOI] [PMC free article] [PubMed] [Google Scholar]





