Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Aug;92(2):603–611. doi: 10.1172/JCI116627

Multiple G-protein-dependent pathways mediate the antisecretory effects of somatostatin and clonidine in the HT29-19A colonic cell line.

G Warhurst 1, L A Turnberg 1, N B Higgs 1, A Tonge 1, J Grundy 1, K E Fogg 1
PMCID: PMC294891  PMID: 8102378

Abstract

Using the functionally differentiated colonic cell line, HT29-19A, we have examined sites at which inhibitory G-proteins mediate the antisecretory actions of somatostatin (SST) and the alpha 2-adrenergic agonist, clonidine (CLON) at the epithelial level. Both agents caused a dose-dependent inhibition (EC50:SST 35 nM; CLON 225 nM) of Cl- secretion (assessed by changes in short circuit current) activated by cAMP-mediated agonists, PGE2 and cholera toxin. Inhibition was accompanied by a reduction in intracellular cAMP accumulation and could be blocked by pretreatment with pertussis toxin at a concentration (200 ng/ml) which activated ADP-ribosylation of a 41-kD inhibitory G protein in HT29-19A membranes. Secretion stimulated by the permeant cAMP analogue, dibutyryl cAMP, was also inhibited by SST and CLON (30-50%; P < 0.005), indicating additional inhibitory sites located distal to cAMP production. Both agents were effective inhibitors of secretion mediated through the Ca2+ signaling pathway. SST (1 microM) and CLON (10 microM) reduced the Isc response to the muscarinic agonist, carbachol, by 60-70%; inhibition was reversed in pertussis toxin-treated cells. These effects did not, however, involve inhibition of the carbachol-induced increase in cellular inositol 1,4,5-trisphosphate levels or the rise in cytosolic calcium, [Ca]i. Inhibition by SST of secretion induced by phorbol 12,13 dibutyrate but not by the calcium agonist, thapsigargin, suggests that SST may act at a distal inhibitory site in the Ca(2+)-dependent secretory process activated by protein kinase C. We conclude that SST and alpha 2-adrenergic agonists can act directly on intestinal epithelial cells to exert a comprehensive inhibition of Cl- secretion mediated through both cAMP and Ca2+/protein kinase C signaling pathways. Inhibition is mediated via pertussis toxin-sensitive G-proteins at sites located both proximal and distal to the production of second messengers.

Full text

PDF
603

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bajnath R. B., van Hoeve M. H., de Jonge H. R., Groot J. A. Regulation of apical Cl- conductance and basolateral K+ conductances by phorbol esters in HT-29cl.19A cells. Am J Physiol. 1992 Oct;263(4 Pt 1):C759–C766. doi: 10.1152/ajpcell.1992.263.4.C759. [DOI] [PubMed] [Google Scholar]
  2. Balda M. S., González-Mariscal L., Contreras R. G., Macias-Silva M., Torres-Marquez M. E., García-Sáinz J. A., Cereijido M. Assembly and sealing of tight junctions: possible participation of G-proteins, phospholipase C, protein kinase C and calmodulin. J Membr Biol. 1991 Jun;122(3):193–202. doi: 10.1007/BF01871420. [DOI] [PubMed] [Google Scholar]
  3. Bouscarel B., Cortinovis C., Carpene C., Murat J. C., Paris H. alpha 2-Adrenoceptors in the HT 29 human colon adenocarcinoma cell line: characterization with [3H]clonidine; effects on cyclic AMP accumulation. Eur J Pharmacol. 1985 Jan 2;107(2):223–231. doi: 10.1016/0014-2999(85)90062-7. [DOI] [PubMed] [Google Scholar]
  4. Brown D. R., Overend M. F., Treder B. G. Neurohormonal regulation of ion transport in the porcine distal jejunum. Actions of somatostatin-14 and its natural and synthetic homologs. J Pharmacol Exp Ther. 1990 Jan;252(1):126–134. [PubMed] [Google Scholar]
  5. Cartwright C. A., McRoberts J. A., Mandel K. G., Dharmsathaphorn K. Synergistic action of cyclic adenosine monophosphate- and calcium-mediated chloride secretion in a colonic epithelial cell line. J Clin Invest. 1985 Nov;76(5):1837–1842. doi: 10.1172/JCI112176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chang E. B., Field M., Miller R. J. alpha 2-Adrenergic receptor regulation of ion transport in rabbit ileum. Am J Physiol. 1982 Mar;242(3):G237–G242. doi: 10.1152/ajpgi.1982.242.3.G237. [DOI] [PubMed] [Google Scholar]
  7. Dharmsathaphorn K., Cohn J., Beuerlein G. Multiple calcium-mediated effector mechanisms regulate chloride secretory responses in T84-cells. Am J Physiol. 1989 Jun;256(6 Pt 1):C1224–C1230. doi: 10.1152/ajpcell.1989.256.6.C1224. [DOI] [PubMed] [Google Scholar]
  8. Dharmsathaphorn K., McRoberts J. A., Mandel K. G., Tisdale L. D., Masui H. A human colonic tumor cell line that maintains vectorial electrolyte transport. Am J Physiol. 1984 Feb;246(2 Pt 1):G204–G208. doi: 10.1152/ajpgi.1984.246.2.G204. [DOI] [PubMed] [Google Scholar]
  9. Donowitz M., Cusolito S., Battisti L., Fogel R., Sharp G. W. Dopamine stimulation of active Na and Cl absorption in rabbit ileum: interaction with alpha 2-adrenergic and specific dopamine receptors. J Clin Invest. 1982 Apr;69(4):1008–1016. doi: 10.1172/JCI110504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Donowitz M., Levine S., Watson A. New drug treatment for diarrhoea. J Intern Med Suppl. 1990;732:155–163. doi: 10.1111/j.1365-2796.1990.tb01488.x. [DOI] [PubMed] [Google Scholar]
  11. Exton J. H. Signaling through phosphatidylcholine breakdown. J Biol Chem. 1990 Jan 5;265(1):1–4. [PubMed] [Google Scholar]
  12. Fargon F., McNaughton P. A., Sepúlveda F. V. Possible involvement of GTP-binding proteins in the deactivation of an inwardly rectifying K+ current in enterocytes isolated from guinea-pig small intestine. Pflugers Arch. 1990 Oct;417(2):240–242. doi: 10.1007/BF00370706. [DOI] [PubMed] [Google Scholar]
  13. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  14. Inoue M., Yoshii M. Modulation of ion channels by somatostatin and acetylcholine. Prog Neurobiol. 1992;38(2):203–230. doi: 10.1016/0301-0082(92)90040-l. [DOI] [PubMed] [Google Scholar]
  15. Jones S. B., Bylund D. B. Characterization and possible mechanisms of alpha 2-adrenergic receptor-mediated sensitization of forskolin-stimulated cyclic AMP production in HT29 cells. J Biol Chem. 1988 Oct 5;263(28):14236–14244. [PubMed] [Google Scholar]
  16. Katada T., Ui M. Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc Natl Acad Sci U S A. 1982 May;79(10):3129–3133. doi: 10.1073/pnas.79.10.3129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Keast J. R., Furness J. B., Costa M. Effects of noradrenaline and somatostatin on basal and stimulated mucosal ion transport in the guinea-pig small intestine. Naunyn Schmiedebergs Arch Pharmacol. 1986 Aug;333(4):393–399. doi: 10.1007/BF00500015. [DOI] [PubMed] [Google Scholar]
  18. Kelley G. G., Poeschla E. M., Barron H. V., Forrest J. N., Jr A1 adenosine receptors inhibit chloride transport in the shark rectal gland. Dissociation of inhibition and cyclic AMP. J Clin Invest. 1990 May;85(5):1629–1636. doi: 10.1172/JCI114614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Knobloch S. F., Diener M., Rummel W. Antisecretory effects of somatostatin and vasopressin in the rat colon descendens in vitro. Regul Pept. 1989 Apr;25(1):75–85. doi: 10.1016/0167-0115(89)90250-4. [DOI] [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Limbird L. E. Receptors linked to inhibition of adenylate cyclase: additional signaling mechanisms. FASEB J. 1988 Aug;2(11):2686–2695. doi: 10.1096/fasebj.2.11.2840317. [DOI] [PubMed] [Google Scholar]
  22. Mallory A., Kern F., Jr Drug-induced pancreatitis: a critical review. Gastroenterology. 1980 Apr;78(4):813–820. [PubMed] [Google Scholar]
  23. Milligan G., Mullaney I., McKenzie F. R. Specificity of interactions of receptors and effectors with GTP-binding proteins in native membranes. Biochem Soc Symp. 1990;56:21–34. [PubMed] [Google Scholar]
  24. Nakaki T., Nakadate T., Yamamoto S., Kato R. Alpha-2 adrenergic inhibition of intestinal secretion induced by prostaglandin E1, vasoactive intestinal peptide and dibutyryl cyclic AMP in rat jejunum. J Pharmacol Exp Ther. 1982 Mar;220(3):637–641. [PubMed] [Google Scholar]
  25. Palmer S., Hughes K. T., Lee D. Y., Wakelam M. J. Development of a novel, Ins(1,4,5)P3-specific binding assay. Its use to determine the intracellular concentration of Ins(1,4,5)P3 in unstimulated and vasopressin-stimulated rat hepatocytes. Cell Signal. 1989;1(2):147–156. doi: 10.1016/0898-6568(89)90004-1. [DOI] [PubMed] [Google Scholar]
  26. Rosenthal W., Hescheler J., Eckert R., Offermanns S., Schmidt A., Hinsch K. D., Spicher K., Trautwein W., Schultz G. Pertussis toxin-sensitive G-proteins: participation in the modulation of voltage-dependent Ca2+ channels by hormones and neurotransmitters. Adv Second Messenger Phosphoprotein Res. 1990;24:89–94. [PubMed] [Google Scholar]
  27. Thastrup O. Role of Ca2(+)-ATPases in regulation of cellular Ca2+ signalling, as studied with the selective microsomal Ca2(+)-ATPase inhibitor, thapsigargin. Agents Actions. 1990 Jan;29(1-2):8–15. doi: 10.1007/BF01964706. [DOI] [PubMed] [Google Scholar]
  28. Tilly B. C., Kansen M., van Gageldonk P. G., van den Berghe N., Galjaard H., Bijman J., de Jonge H. R. G-proteins mediate intestinal chloride channel activation. J Biol Chem. 1991 Feb 5;266(4):2036–2040. [PubMed] [Google Scholar]
  29. Toro M. J., Birnbaumer L., Redon M. C., Montoya E. Mechanism of action of somatostatin. Horm Res. 1988;29(2-3):59–64. doi: 10.1159/000180969. [DOI] [PubMed] [Google Scholar]
  30. Turner J. T., Ray-Prenger C., Bylund D. B. Alpha 2-adrenergic receptors in the human cell line, HT29. Characterization with the full agonist radioligand [3H]UK-14,304 and inhibition of adenylate cyclase. Mol Pharmacol. 1985 Nov;28(5):422–430. [PubMed] [Google Scholar]
  31. Vaandrager A. B., Bajnath R., Groot J. A., Bot A. G., De Jonge H. R. Ca2+ and cAMP activate different chloride efflux pathways in HT-29.cl19A colonic epithelial cell line. Am J Physiol. 1991 Dec;261(6 Pt 1):G958–G965. doi: 10.1152/ajpgi.1991.261.6.G958. [DOI] [PubMed] [Google Scholar]
  32. Voisin T., Rouyer-Fessard C., Laburthe M. Distribution of common peptide YY-neuropeptide Y receptor along rat intestinal villus-crypt axis. Am J Physiol. 1990 May;258(5 Pt 1):G753–G759. doi: 10.1152/ajpgi.1990.258.5.G753. [DOI] [PubMed] [Google Scholar]
  33. Warhurst G., Higgs N. B., Tonge A., Turnberg L. A. Stimulatory and inhibitory actions of carbachol on chloride secretory responses in human colonic cell line T84. Am J Physiol. 1991 Aug;261(2 Pt 1):G220–G228. doi: 10.1152/ajpgi.1991.261.2.G220. [DOI] [PubMed] [Google Scholar]
  34. Weber M., Cole T., Conlon J. M. Specific binding and degradation of somatostatin by membrane vesicles from pig gut. Am J Physiol. 1986 May;250(5 Pt 1):G679–G685. doi: 10.1152/ajpgi.1986.250.5.G679. [DOI] [PubMed] [Google Scholar]
  35. van den Berghe N., Nieuwkoop N. J., Vaandrager A. B., de Jonge H. R. Asymmetrical distribution of G-proteins among the apical and basolateral membranes of rat enterocytes. Biochem J. 1991 Sep 1;278(Pt 2):565–571. doi: 10.1042/bj2780565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. van den Berghe N., Nieuwkoop N. J., Vaandrager A. B., de Jonge H. R. Asymmetrical distribution of G-proteins among the apical and basolateral membranes of rat enterocytes. Biochem J. 1991 Sep 1;278(Pt 2):565–571. doi: 10.1042/bj2780565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. van den Berghe N., Vaandrager A. B., Bot A. G., Parker P. J., de Jonge H. R. Dual role for protein kinase C alpha as a regulator of ion secretion in the HT29cl.19A human colonic cell line. Biochem J. 1992 Jul 15;285(Pt 2):673–679. doi: 10.1042/bj2850673. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES