Abstract
Lung carbonic anhydrase (CA) permits rapid pH responses when changes in regional ventilation or perfusion alter airway and alveolar PCO2. These pH changes affect airway and vascular resistances and lung compliance to optimize the balance of regional ventilation (VA) and perfusion (Q) in the lung. To test the hypothesis that these or other CA-dependent mechanisms contribute to VA/Q matching, we administered acetazolamide (25 mg/kg intravenously) to six anesthetized and paralyzed dogs and measured VA/Q relationships before and after CA inhibition by the multiple inert gas elimination technique. Four other groups of dogs were studied to control for possible confounding effects of time under anesthesia and nonselective CA inhibition by acetazolamide: (a) saline placebo as a control for duration of anesthesia, (b) 4% CO2 inhalation to mimic systemic CO2 retention, (c) 1 mg/kg benzolamide (a selective renal CA inhibitor) or 0.5 meq/kg HCl to mimic systemic metabolic acidosis, and (d) 500 mg/kg 4,4'-dinitrostilbene-2,2'-disulfonate (an inhibitor of red cell band 3 protein) to mimic the respiratory acidosis arising from an intracapillary block to rapid mobilization of plasma HCO3- in CO2 exchange. Acetazolamide increased VA/Q mismatch and reduced arterial PO2 measured at equilibrium but these did not occur in the control group. There was no deterioration in VA/Q matching when systemic respiratory acidosis produced either by CO2 inhalation or 4,4'-dinitrostilbene-2,2'-disulfonate or metabolic acidosis (benzolamide or HCl) were imposed to mimic the effects of acetazolamide apart from its inhibition of lung CA. These results support the concept that lung CA subserves VA/Q matching in the normal lung.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bidani A. Analysis of abnormalities of capillary CO2 exchange in vivo. J Appl Physiol (1985) 1991 Apr;70(4):1686–1699. doi: 10.1152/jappl.1991.70.4.1686. [DOI] [PubMed] [Google Scholar]
- Bidani A., Mathew S. J., Crandall E. D. Pulmonary vascular carbonic anhydrase activity. J Appl Physiol Respir Environ Exerc Physiol. 1983 Jul;55(1 Pt 1):75–83. doi: 10.1152/jappl.1983.55.1.75. [DOI] [PubMed] [Google Scholar]
- Chander A., Johnson R. G., Reicherter J., Fisher A. B. Lung lamellar bodies maintain an acidic internal pH. J Biol Chem. 1986 May 5;261(13):6126–6131. [PubMed] [Google Scholar]
- Colacicco G., Basu M. K., Scarpelli E. M. pH, temperature, humidity and the dynamic force-area curve of dipalmitoyl lecithin. Respir Physiol. 1976 Aug;27(2):169–186. doi: 10.1016/0034-5687(76)90072-4. [DOI] [PubMed] [Google Scholar]
- Coon R. L., Zuperku E. J., Kampine J. P. Effect of sympathetic nerve stimulation on hypocapnic airway constriction. Proc Soc Exp Biol Med. 1980 May;164(1):63–68. doi: 10.3181/00379727-164-40825. [DOI] [PubMed] [Google Scholar]
- Crandall E. D., Mathew S. J., Fleischer R. S., Winter H. I., Bidani A. Effects of inhibition of RBC HCO3-/Cl- exchange on CO2 excretion and downstream pH disequilibrium in isolated rat lungs. J Clin Invest. 1981 Oct;68(4):853–862. doi: 10.1172/JCI110340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crandall E. D., O'Brasky J. E. Direct evidence of participation of rat lung carbonic anhydrase in CO2 reactions. J Clin Invest. 1978 Sep;62(3):618–622. doi: 10.1172/JCI109168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dawson C. A. Role of pulmonary vasomotion in physiology of the lung. Physiol Rev. 1984 Apr;64(2):544–616. doi: 10.1152/physrev.1984.64.2.544. [DOI] [PubMed] [Google Scholar]
- Delpierre S., Jammes Y., Mei N., Mathiot M. J., Grimaud C. Mise en évidence de l'origine vagale réflexe des effets bronchoconstricteurs du CO2 chez le chat. J Physiol (Paris) 1980;76(8):889–891. [PubMed] [Google Scholar]
- Ecanow B., Blake M. I. Significance of surfactant transitions in the respiratory process. Naturwissenschaften. 1978 Jan;65(1):68–69. doi: 10.1007/BF00420648. [DOI] [PubMed] [Google Scholar]
- Effros R. M., Chang R. S., Silverman P. Acceleration of plasma bicarbonate conversion to carbon dioxide by pulmonary carbonic anhydrase. Science. 1978 Jan 27;199(4327):427–429. doi: 10.1126/science.413195. [DOI] [PubMed] [Google Scholar]
- Enns T., Hill E. P. CO2 diffusing capacity in isolated dog lung lobes and the role of carbonic anhydrase. J Appl Physiol Respir Environ Exerc Physiol. 1983 Feb;54(2):483–490. doi: 10.1152/jappl.1983.54.2.483. [DOI] [PubMed] [Google Scholar]
- Evans J. W., Wagner P. D. Limits on VA/Q distributions from analysis of experimental inert gas elimination. J Appl Physiol Respir Environ Exerc Physiol. 1977 Jun;42(6):889–898. doi: 10.1152/jappl.1977.42.6.889. [DOI] [PubMed] [Google Scholar]
- Farhi L. E., Plewes J. L., Olszowka A. J. Lung carbonate dehydratase (carbonic anhydrase), CO2 stores and CO2 transport. Ciba Found Symp. 1976;(38):235–249. doi: 10.1002/9780470720202.ch14. [DOI] [PubMed] [Google Scholar]
- Glenny R. W., Lamm W. J., Albert R. K., Robertson H. T. Gravity is a minor determinant of pulmonary blood flow distribution. J Appl Physiol (1985) 1991 Aug;71(2):620–629. doi: 10.1152/jappl.1991.71.2.620. [DOI] [PubMed] [Google Scholar]
- Hlastala M. P. Multiple inert gas elimination technique. J Appl Physiol Respir Environ Exerc Physiol. 1984 Jan;56(1):1–7. doi: 10.1152/jappl.1984.56.1.1. [DOI] [PubMed] [Google Scholar]
- Ingram R. H., Jr Effects of airway versus arterial CO2 changes on lung mechanics in dogs. J Appl Physiol. 1975 Apr;38(4):603–607. doi: 10.1152/jappl.1975.38.4.603. [DOI] [PubMed] [Google Scholar]
- Iversen P. O. Evidence for long-term fluctuations in regional blood flow within the rabbit left ventricle. Acta Physiol Scand. 1992 Nov;146(3):329–339. doi: 10.1111/j.1748-1716.1992.tb09427.x. [DOI] [PubMed] [Google Scholar]
- King R. B., Bassingthwaighte J. B. Temporal fluctuations in regional myocardial flows. Pflugers Arch. 1989 Feb;413(4):336–342. doi: 10.1007/BF00584480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klocke R. A. Catalysis of CO2 reactions by lung carbonic anhydrase. J Appl Physiol Respir Environ Exerc Physiol. 1978 Jun;44(6):882–888. doi: 10.1152/jappl.1978.44.6.882. [DOI] [PubMed] [Google Scholar]
- Klocke R. A. Equilibrium of CO2 reactions in the pulmonary capillary. J Appl Physiol Respir Environ Exerc Physiol. 1980 Jun;48(6):972–976. doi: 10.1152/jappl.1980.48.6.972. [DOI] [PubMed] [Google Scholar]
- Lenfant C. Time-dependent variations of pulmonary gas exchange in normal man at rest. J Appl Physiol. 1967 Apr;22(4):675–684. doi: 10.1152/jappl.1967.22.4.675. [DOI] [PubMed] [Google Scholar]
- Levy S. E., Simmons D. H. Redistribution of alveolar ventilation following pulmonary thromboembolism in the dog. J Appl Physiol. 1974 Jan;36(1):60–68. doi: 10.1152/jappl.1974.36.1.60. [DOI] [PubMed] [Google Scholar]
- Levy S. E., Stein M., Totten R. S., Bruderman I., Wessler S., Robin E. D. Ventilation-perfusion abnormalities in experimental pulmonary embolism. J Clin Invest. 1965 Oct;44(10):1699–1707. doi: 10.1172/JCI105277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lubman R. L., Danto S. I., Crandall E. D. Evidence for active H+ secretion by rat alveolar epithelial cells. Am J Physiol. 1989 Dec;257(6 Pt 1):L438–L445. doi: 10.1152/ajplung.1989.257.6.L438. [DOI] [PubMed] [Google Scholar]
- Lönnerholm G. Pulmonary carbonic anhydrase in the human, monkey, and rat. J Appl Physiol Respir Environ Exerc Physiol. 1982 Feb;52(2):352–356. doi: 10.1152/jappl.1982.52.2.352. [DOI] [PubMed] [Google Scholar]
- Lönnerholm G., Wistrand P. Carbonic anhydrase in the human fetal lung. Pediatr Res. 1982 Jun;16(6):407–411. doi: 10.1203/00006450-198206000-00002. [DOI] [PubMed] [Google Scholar]
- Lütjen-Drecoll E., Eichhorn M., Bárány E. H. Carbonic anhydrase in epithelia and fenestrated juxtaepithelial capillaries of Macaca fascicularis. Acta Physiol Scand. 1985 Jun;124(2):295–307. doi: 10.1111/j.1748-1716.1985.tb07664.x. [DOI] [PubMed] [Google Scholar]
- Marconi C., Heisler N., Meyer M., Weitz H., Pendergast D. R., Cerretelli P., Piiper J. Blood flow distribution and its temporal variability in stimulated dog gastrocnemius muscle. Respir Physiol. 1988 Oct;74(1):1–13. doi: 10.1016/0034-5687(88)90135-1. [DOI] [PubMed] [Google Scholar]
- Nielson D. W., Goerke J., Clements J. A. Alveolar subphase pH in the lungs of anesthetized rabbits. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7119–7123. doi: 10.1073/pnas.78.11.7119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nioka S., Henry R. P., Forster R. E. Total CA activity in isolated perfused guinea pig lung by 18O-exchange method. J Appl Physiol (1985) 1988 Nov;65(5):2236–2244. doi: 10.1152/jappl.1988.65.5.2236. [DOI] [PubMed] [Google Scholar]
- O'Donnell W. J., Rosenberg M., Niven R. W., Drazen J. M., Israel E. Acetazolamide and furosemide attenuate asthma induced by hyperventilation of cold, dry air. Am Rev Respir Dis. 1992 Dec;146(6):1518–1523. doi: 10.1164/ajrccm/146.6.1518. [DOI] [PubMed] [Google Scholar]
- Orchard C. H., Sanchez de Leon R., Sykes M. K. The relationship between hypoxic pulmonary vasoconstriction and arterial oxygen tension in the intact dog. J Physiol. 1983 May;338:61–74. doi: 10.1113/jphysiol.1983.sp014660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SEVERINGHAUS J. W., SWENSON E. W., FINLEY T. N., LATEGOLA M. T., WILLIAMS J. Unilateral hypoventilation produced in dogs by occluding one pulmonary artery. J Appl Physiol. 1961 Jan;16:53–60. doi: 10.1152/jappl.1961.16.1.53. [DOI] [PubMed] [Google Scholar]
- SWENSON E. W., FINLEY T. N., GUZMAN S. V. Unilateral hypoventilation in man during temporary occlusion of one pulmonary artery. J Clin Invest. 1961 May;40:828–835. doi: 10.1172/JCI104316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sackner M. A., Dougherty R., Atkins N., Culver D., Poole D., Stott F. D., Wanner A. Techniques of pulmonary capillary blood flow determination. Bull Physiopathol Respir (Nancy) 1973 Sep-Oct;9(5):1189–1202. [PubMed] [Google Scholar]
- Samanek M., Aviado D. M. Interrelationships between pulmonary blood flow and bronchomotor tone: Po2 and Pco2. J Appl Physiol. 1967 Apr;22(4):719–730. doi: 10.1152/jappl.1967.22.4.719. [DOI] [PubMed] [Google Scholar]
- Severinghaus J. W. Blood gas calculator. J Appl Physiol. 1966 May;21(3):1108–1116. doi: 10.1152/jappl.1966.21.3.1108. [DOI] [PubMed] [Google Scholar]
- Shepard J. W., Jr, Dolan G. F., Yu S. Y. Factors regulating lamellar body volume density of type II pneumocytes in excised dog lungs. J Appl Physiol Respir Environ Exerc Physiol. 1982 Sep;53(3):555–562. doi: 10.1152/jappl.1982.53.3.555. [DOI] [PubMed] [Google Scholar]
- Smith L. J., Inners C. R., Terry P. B., Menkes H. A., Traystman R. J. Effects of methacholine and hypocapnia on airways and collateral ventilation in dogs. J Appl Physiol Respir Environ Exerc Physiol. 1979 May;46(5):966–972. doi: 10.1152/jappl.1979.46.5.966. [DOI] [PubMed] [Google Scholar]
- Sterling G. M. The mechanism of bronchoconstriction due to hypocapnia in man. Clin Sci. 1968 Apr;34(2):277–285. [PubMed] [Google Scholar]
- Sugai N., Ninomiya Y., Oosaki T. Localization of carbonic anhydrase in the rat lung. Histochemistry. 1981;72(3):415–424. doi: 10.1007/BF00501783. [DOI] [PubMed] [Google Scholar]
- Swenson E. R., Grønlund J., Ohlsson J., Hlastala M. P. In vivo quantitation of carbonic anhydrase and band 3 protein contributions to pulmonary gas exchange. J Appl Physiol (1985) 1993 Feb;74(2):838–848. doi: 10.1152/jappl.1993.74.2.838. [DOI] [PubMed] [Google Scholar]
- Swenson E. R., Maren T. H. A quantitative analysis of CO2 transport at rest and during maximal exercise. Respir Physiol. 1978 Nov;35(2):129–159. doi: 10.1016/0034-5687(78)90018-x. [DOI] [PubMed] [Google Scholar]
- Traystman R. J., Terry P. B., Menkes H. A. Carbon dioxide--a major determinant of collateral ventilation. J Appl Physiol Respir Environ Exerc Physiol. 1978 Jul;45(1):69–74. doi: 10.1152/jappl.1978.45.1.69. [DOI] [PubMed] [Google Scholar]
- Tsukimoto K., Arcos J. P., Schaffartzik W., Wagner P. D., West J. B. Effect of common dead space on VA/Q distribution in the dog. J Appl Physiol (1985) 1990 Jun;68(6):2488–2493. doi: 10.1152/jappl.1990.68.6.2488. [DOI] [PubMed] [Google Scholar]
- Twining R. H., Lopez-Majano V., Wagner H. N., Jr, Chernick V., Dutton R. E. Effect of regional hypercpnia on the distribution of pulmonary blood flow in man. Johns Hopkins Med J. 1968 Aug;123(2):95–103. [PubMed] [Google Scholar]
- Twort C. H., Cameron I. R. Effects of PCO2, pH and extracellular calcium on contraction of airway smooth muscle from rats. Respir Physiol. 1986 Dec;66(3):259–267. doi: 10.1016/0034-5687(86)90078-2. [DOI] [PubMed] [Google Scholar]
- VENRATH H., ROTTHOFF F., VALENTIN H., BOLT W. Bronchospirographische Untersuchungen bei Durchblutungsstörungen im kleinen Kreislauf. Beitr Klin Tuberk Spezif Tuberkuloseforsch. 1952 Aug 22;107(4):291–294. [PubMed] [Google Scholar]
- Wagner P. D., Hedenstierna G., Bylin G., Lagerstrand L. Reproducibility of the multiple inert gas elimination technique. J Appl Physiol (1985) 1987 Apr;62(4):1740–1746. doi: 10.1152/jappl.1987.62.4.1740. [DOI] [PubMed] [Google Scholar]
- Wagner P. D., Naumann P. F., Laravuso R. B. Simultaneous measurement of eight foreign gases in blood by gas chromatography. J Appl Physiol. 1974 May;36(5):600–605. doi: 10.1152/jappl.1974.36.5.600. [DOI] [PubMed] [Google Scholar]
- Wagner P. D., Saltzman H. A., West J. B. Measurement of continuous distributions of ventilation-perfusion ratios: theory. J Appl Physiol. 1974 May;36(5):588–599. doi: 10.1152/jappl.1974.36.5.588. [DOI] [PubMed] [Google Scholar]
- Wildeboer-Venema F. Influence of nitrogen, oxygen, air and alveolar gas upon surface tension of lung surfactant. Respir Physiol. 1984 Oct;58(1):1–14. doi: 10.1016/0034-5687(84)90040-9. [DOI] [PubMed] [Google Scholar]