Abstract
To determine whether hemodynamic changes can modulate insulin action in vivo, we administered angiotensin II (AII) to normal men under three separate, euglycemic conditions. First, in the presence of physiological hyperinsulinemia (approximately 115 microU/ml), infusion of AII at rates of 2, 10, and 20 ng/min per kg caused significant elevations of blood pressure, whole-body glucose clearance, and plasma insulin concentrations in an AII dose-dependent manner. Second, in the presence of plasma insulin concentrations that stimulate glucose transport maximally (approximately 5,000 microU/ml), AII infusions increased whole-body glucose clearance without enhancing glucose extraction across the leg. Third, in the presence of basal insulin concentrations (approximately 13 microU/ml), AII infusions had no effect on whole-body glucose turnover or leg glucose extraction. Thus, AII enhanced whole-body glucose utilization without directly stimulating glucose transport in a major skeletal muscle bed. To evaluate a possible hemodynamic mechanism for the effects of AII on glucose utilization, we measured blood flow to two areas that differ in their sensitivity to insulin: the kidneys and the leg. We found that AII redistributed blood flow away from the predominantly insulin-independent tissues of the kidney and toward the insulin-sensitive tissues of the leg during both sham and hyperinsulinemic glucose clamps. The redistribution of flow had no effect on whole-body glucose turnover when leg glucose uptake was unstimulated (sham clamps). However, when leg glucose uptake was activated by insulin, the redistribution of flow caused a net increase in whole-body glucose utilization. Our findings indicate that hemodynamic factors can modulate insulin action in vivo. Furthermore, our results suggest that variable activity of the renin-angiotensin system may contribute to inconsistencies in the association between insulin resistance and hypertension.
Full text
PDF![720](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb29/294906/4d2a8aa5b54c/jcinvest00029-0194.png)
![721](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb29/294906/f79b3b2f717f/jcinvest00029-0195.png)
![722](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb29/294906/1544aed52031/jcinvest00029-0196.png)
![723](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb29/294906/0520109aa8c7/jcinvest00029-0197.png)
![724](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb29/294906/0dbc31ccb239/jcinvest00029-0198.png)
![725](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb29/294906/f721dd6ec1f5/jcinvest00029-0199.png)
![726](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb29/294906/b0970caf4fac/jcinvest00029-0200.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson E. A., Balon T. W., Hoffman R. P., Sinkey C. A., Mark A. L. Insulin increases sympathetic activity but not blood pressure in borderline hypertensive humans. Hypertension. 1992 Jun;19(6 Pt 2):621–627. doi: 10.1161/01.hyp.19.6.621. [DOI] [PubMed] [Google Scholar]
- Anderson E. A., Hoffman R. P., Balon T. W., Sinkey C. A., Mark A. L. Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest. 1991 Jun;87(6):2246–2252. doi: 10.1172/JCI115260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berglund G., Larsson B., Andersson O., Larsson O., Svärdsudd K., Björntorp P., Wilhelmsen L. Body composition and glucose metabolism in hypertensive middle-aged males. Acta Med Scand. 1976;200(3):163–169. doi: 10.1111/j.0954-6820.1976.tb08215.x. [DOI] [PubMed] [Google Scholar]
- Buchanan T. A. Insulin resistance and hyperinsulinemia: implications for the pathogenesis and treatment of hypertension. Semin Nephrol. 1991 Sep;11(5):512–522. [PubMed] [Google Scholar]
- Buchanan T. A., Sipos G. F., Gadalah S., Yip K. P., Marsh D. J., Hsueh W., Bergman R. N. Glucose tolerance and insulin action in rats with renovascular hypertension. Hypertension. 1991 Sep;18(3):341–347. doi: 10.1161/01.hyp.18.3.341. [DOI] [PubMed] [Google Scholar]
- Ciaraldi T. P., Kolterman O. G., Olefsky J. M. Mechanism of the postreceptor defect in insulin action in human obesity. Decrease in glucose transport system activity. J Clin Invest. 1981 Oct;68(4):875–880. doi: 10.1172/JCI110342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEBONO E., LEEGDE J., MOTTRAM F. R., PICKERING G. W., BROWN J. J., KEEN H., PEART W. S., SANDERSON P. H. THE ACTION OF ANGIOTENSIN IN MAN. Clin Sci. 1963 Aug;25:123–157. [PubMed] [Google Scholar]
- DeFronzo R. A., Goldberg M., Agus Z. S. The effects of glucose and insulin on renal electrolyte transport. J Clin Invest. 1976 Jul;58(1):83–90. doi: 10.1172/JCI108463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dohm G. L., Tapscott E. B., Pories W. J., Dabbs D. J., Flickinger E. G., Meelheim D., Fushiki T., Atkinson S. M., Elton C. W., Caro J. F. An in vitro human muscle preparation suitable for metabolic studies. Decreased insulin stimulation of glucose transport in muscle from morbidly obese and diabetic subjects. J Clin Invest. 1988 Aug;82(2):486–494. doi: 10.1172/JCI113622. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferrannini E., Buzzigoli G., Bonadonna R., Giorico M. A., Oleggini M., Graziadei L., Pedrinelli R., Brandi L., Bevilacqua S. Insulin resistance in essential hypertension. N Engl J Med. 1987 Aug 6;317(6):350–357. doi: 10.1056/NEJM198708063170605. [DOI] [PubMed] [Google Scholar]
- Finegood D. T., Bergman R. N., Vranic M. Estimation of endogenous glucose production during hyperinsulinemic-euglycemic glucose clamps. Comparison of unlabeled and labeled exogenous glucose infusates. Diabetes. 1987 Aug;36(8):914–924. doi: 10.2337/diab.36.8.914. [DOI] [PubMed] [Google Scholar]
- Gans R. O., Bilo H. J., von Maarschalkerweerd W. W., Heine R. J., Nauta J. J., Donker A. J. Exogenous insulin augments in healthy volunteers the cardiovascular reactivity to noradrenaline but not to angiotensin II. J Clin Invest. 1991 Aug;88(2):512–518. doi: 10.1172/JCI115333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gasic S., Heinz G., Kleinbloesem C. Quantitative evidence of peripheral conversion of angiotensin within the human leg: effects of local angiotensin-I administration and angiotensin-converting enzyme inhibition on regional blood flow and angiotensin-II balance across the leg. Naunyn Schmiedebergs Arch Pharmacol. 1990 Oct;342(4):436–440. doi: 10.1007/BF00169461. [DOI] [PubMed] [Google Scholar]
- Gottesman I., Mandarino L., Gerich J. Use of glucose uptake and glucose clearance for the evaluation of insulin action in vivo. Diabetes. 1984 Feb;33(2):184–191. doi: 10.2337/diab.33.2.184. [DOI] [PubMed] [Google Scholar]
- HARVEY R. B., BROTHERS A. J. Renal extraction of para-aminohippurate and creatinine measured by continuous in vivo sampling of arterial and renal-vein blood. Ann N Y Acad Sci. 1962 Oct 31;102:46–54. doi: 10.1111/j.1749-6632.1962.tb13624.x. [DOI] [PubMed] [Google Scholar]
- Herbert V., Lau K. S., Gottlieb C. W., Bleicher S. J. Coated charcoal immunoassay of insulin. J Clin Endocrinol Metab. 1965 Oct;25(10):1375–1384. doi: 10.1210/jcem-25-10-1375. [DOI] [PubMed] [Google Scholar]
- Kashiwagi A., Verso M. A., Andrews J., Vasquez B., Reaven G., Foley J. E. In vitro insulin resistance of human adipocytes isolated from subjects with noninsulin-dependent diabetes mellitus. J Clin Invest. 1983 Oct;72(4):1246–1254. doi: 10.1172/JCI111080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolterman O. G., Insel J., Saekow M., Olefsky J. M. Mechanisms of insulin resistance in human obesity: evidence for receptor and postreceptor defects. J Clin Invest. 1980 Jun;65(6):1272–1284. doi: 10.1172/JCI109790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kotchen T. A., Zhang H. Y., Covelli M., Blehschmidt N. Insulin resistance and blood pressure in Dahl rats and in one-kidney, one-clip hypertensive rats. Am J Physiol. 1991 Dec;261(6 Pt 1):E692–E697. doi: 10.1152/ajpendo.1991.261.6.E692. [DOI] [PubMed] [Google Scholar]
- Laakso M., Edelman S. V., Brechtel G., Baron A. D. Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance. J Clin Invest. 1990 Jun;85(6):1844–1852. doi: 10.1172/JCI114644. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laakso M., Edelman S. V., Brechtel G., Baron A. D. Effects of epinephrine on insulin-mediated glucose uptake in whole body and leg muscle in humans: role of blood flow. Am J Physiol. 1992 Aug;263(2 Pt 1):E199–E204. doi: 10.1152/ajpendo.1992.263.2.E199. [DOI] [PubMed] [Google Scholar]
- Laakso M., Edelman S. V., Brechtel G., Baron A. D. Impaired insulin-mediated skeletal muscle blood flow in patients with NIDDM. Diabetes. 1992 Sep;41(9):1076–1083. doi: 10.2337/diab.41.9.1076. [DOI] [PubMed] [Google Scholar]
- Lembo G., Napoli R., Capaldo B., Rendina V., Iaccarino G., Volpe M., Trimarco B., Saccà L. Abnormal sympathetic overactivity evoked by insulin in the skeletal muscle of patients with essential hypertension. J Clin Invest. 1992 Jul;90(1):24–29. doi: 10.1172/JCI115842. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levens N. R., Freedlender A. E., Peach M. J., Carey R. M. Control of renal function by intrarenal angiotensin II. Endocrinology. 1983 Jan;112(1):43–49. doi: 10.1210/endo-112-1-43. [DOI] [PubMed] [Google Scholar]
- Li T., Zimmerman B. G. In vivo comparison of renal and femoral vascular sensitivity and local angiotensin generation. Hypertension. 1990 Feb;15(2):204–209. doi: 10.1161/01.hyp.15.2.204. [DOI] [PubMed] [Google Scholar]
- Liang C., Doherty J. U., Faillace R., Maekawa K., Arnold S., Gavras H., Hood W. B., Jr Insulin infusion in conscious dogs. Effects on systemic and coronary hemodynamics, regional blood flows, and plasma catecholamines. J Clin Invest. 1982 Jun;69(6):1321–1336. doi: 10.1172/JCI110572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manicardi V., Camellini L., Bellodi G., Coscelli C., Ferrannini E. Evidence for an association of high blood pressure and hyperinsulinemia in obese man. J Clin Endocrinol Metab. 1986 Jun;62(6):1302–1304. doi: 10.1210/jcem-62-6-1302. [DOI] [PubMed] [Google Scholar]
- Marigliano A., Tedde R., Sechi L. A., Pala A., Pisanu G., Pacifico A. Insulinemia and blood pressure. Relationships in patients with primary and secondary hypertension, and with or without glucose metabolism impairment. Am J Hypertens. 1990 Jul;3(7):521–526. doi: 10.1093/ajh/3.7.521. [DOI] [PubMed] [Google Scholar]
- Modan M., Halkin H., Almog S., Lusky A., Eshkol A., Shefi M., Shitrit A., Fuchs Z. Hyperinsulinemia. A link between hypertension obesity and glucose intolerance. J Clin Invest. 1985 Mar;75(3):809–817. doi: 10.1172/JCI111776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Motwani J. G., Struthers A. D. Dose-response study of the redistribution of intravascular volume by angiotensin II in man. Clin Sci (Lond) 1992 Apr;82(4):397–405. doi: 10.1042/cs0820397. [DOI] [PubMed] [Google Scholar]
- Natali A., Buzzigoli G., Taddei S., Santoro D., Cerri M., Pedrinelli R., Ferrannini E. Effects of insulin on hemodynamics and metabolism in human forearm. Diabetes. 1990 Apr;39(4):490–500. doi: 10.2337/diab.39.4.490. [DOI] [PubMed] [Google Scholar]
- Nørgaard K., Jensen T., Skøtt P., Thorsteinsson B., Bruun N. E., Giese J., Feldt-Rasmussen B. Effects of insulin on renal haemodynamics and sodium handling in normal subjects. Scand J Clin Lab Invest. 1991 Jun;51(4):367–376. doi: 10.1080/00365519109091628. [DOI] [PubMed] [Google Scholar]
- O'Hare J. A., Minaker K. L., Meneilly G. S., Rowe J. W., Pallotta J. A., Young J. B. Effect of insulin on plasma norepinephrine and 3,4-dihydroxyphenylalanine in obese men. Metabolism. 1989 Apr;38(4):322–329. doi: 10.1016/0026-0495(89)90118-2. [DOI] [PubMed] [Google Scholar]
- Pollare T., Lithell H., Berne C. Insulin resistance is a characteristic feature of primary hypertension independent of obesity. Metabolism. 1990 Feb;39(2):167–174. doi: 10.1016/0026-0495(90)90071-j. [DOI] [PubMed] [Google Scholar]
- Rosivall L., Navar L. G. Effects on renal hemodynamics of intra-arterial infusions of angiotensins I and II. Am J Physiol. 1983 Aug;245(2):F181–F187. doi: 10.1152/ajprenal.1983.245.2.F181. [DOI] [PubMed] [Google Scholar]
- Rowe J. W., Young J. B., Minaker K. L., Stevens A. L., Pallotta J., Landsberg L. Effect of insulin and glucose infusions on sympathetic nervous system activity in normal man. Diabetes. 1981 Mar;30(3):219–225. doi: 10.2337/diab.30.3.219. [DOI] [PubMed] [Google Scholar]
- STEELE R. Influences of glucose loading and of injected insulin on hepatic glucose output. Ann N Y Acad Sci. 1959 Sep 25;82:420–430. doi: 10.1111/j.1749-6632.1959.tb44923.x. [DOI] [PubMed] [Google Scholar]
- Shen D. C., Shieh S. M., Fuh M. M., Wu D. A., Chen Y. D., Reaven G. M. Resistance to insulin-stimulated-glucose uptake in patients with hypertension. J Clin Endocrinol Metab. 1988 Mar;66(3):580–583. doi: 10.1210/jcem-66-3-580. [DOI] [PubMed] [Google Scholar]
- Singer P., Gödicke W., Voigt S., Hajdu I., Weiss M. Postprandial hyperinsulinemia in patients with mild essential hypertension. Hypertension. 1985 Mar-Apr;7(2):182–186. doi: 10.1161/01.hyp.7.2.182. [DOI] [PubMed] [Google Scholar]
- Stokland O., Molaug M., Thorvaldson J., Ilebekk A. Angiotensin II infusion during beta-adrenergic stimulation by isoproterenol. Effects on hepatic, splenic and cardiac blood volumes and on the magnitude and distribution of cardiac output in the dog. Acta Physiol Scand. 1986 Jul;127(3):387–394. doi: 10.1111/j.1748-1716.1986.tb07919.x. [DOI] [PubMed] [Google Scholar]
- Yang Y. J., Hope I. D., Ader M., Bergman R. N. Insulin transport across capillaries is rate limiting for insulin action in dogs. J Clin Invest. 1989 Nov;84(5):1620–1628. doi: 10.1172/JCI114339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zierler B. K., Kirkman T. R., Kraiss L. W., Reiss W. G., Horn J. R., Bauer L. A., Clowes A. W., Kohler T. R. Accuracy of duplex scanning for measurement of arterial volume flow. J Vasc Surg. 1992 Oct;16(4):520–526. [PubMed] [Google Scholar]