Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1991 Jan;87(1):247–254. doi: 10.1172/JCI114978

Importance of mitral subvalvular apparatus in terms of cardiac energetics and systolic mechanics in the ejecting canine heart.

K L Yun 1, M A Niczyporuk 1, G E Sarris 1, J I Fann 1, D C Miller 1
PMCID: PMC295037  PMID: 1985098

Abstract

To assess the importance of the intact mitral subvalvular apparatus for left ventricular (LV) energetics, data from nine open-chest ejecting canine hearts were analyzed using piezoelectric crystals to measure LV volume. After mitral valve replacement with preservation of all chordae tendineae, baseline LV function was assessed during transient caval occlusion: A quadratic fit of the LV end-systolic pressure-volume data was used to determine the curvilinear end-systolic pressure-volume relationship (ESPVR). All chordae were then divided with exteriorized snares. Reassessment revealed deterioration of global LV pump function: (a) the coefficient of nonlinearity, decreased (less negative) by 90% (P = 0.06); (b) slope of the curvilinear ESPVR at the volume axis intercept, decreased by 75% (P = 0.01); and V100, end-systolic volume at 100 mmHg end-systolic pressure, increased by 42% (P less than 0.02). Similarly, preload recruitable stroke work fell significantly (-14%) and Vw1,000 (end-diastolic volume [EDV] at stroke work [SW] of 1,000 mmHg.ml) rose by 17% (P less than 0.04). With respect to LV energetics, the total mechanical energy generated by the ventricle decreased, as indicated by a decline in the slope of the pressure volume area (PVA)-EDV relationship (120 +/- 13 [mean +/- SD] vs. 105 +/- 13 mmHg, P less than 0.001). Additionally, comparison of LV SW and PVA from single beats with matched EDV showed that the efficiency of converting mechanical energy to external work (SW/PVA) declined by 14% (0.65 +/- 0.13 vs. 0.56 +/- 0.08, P less than 0.03) after chordal division. While effective systemic arterial elastance, Ea, also fell significantly (P = 0.03) after the chordae were severed, the Ea/Ees ratio (Ees = slope of the linear ESPVR) increased by 124% (0.91 +/- 0.53 vs. 2.04 +/- 0.87, P = 0.001) due to a proportionally greater decline in Ees. This indicates a mismatch in ventriculo-arterial interaction, deviating from that required for maximal external output (viz., Ea/Ees = 1). These adverse effects of chordal division may be related to the observed changes in LV geometry (i.e., eccentricity). We conclude that the intact mitral subvalvular apparatus is important in optimizing LV energetics and ventriculo-vascular coupling in addition to the enhancement of LV systolic performance.

Full text

PDF
247

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alyono D., Larson V. E., Anderson R. W. Defining end systole for end-systolic pressure-volume ratio. J Surg Res. 1985 Oct;39(4):344–350. doi: 10.1016/0022-4804(85)90113-1. [DOI] [PubMed] [Google Scholar]
  2. Asanoi H., Sasayama S., Kameyama T. Ventriculoarterial coupling in normal and failing heart in humans. Circ Res. 1989 Aug;65(2):483–493. doi: 10.1161/01.res.65.2.483. [DOI] [PubMed] [Google Scholar]
  3. Burkhoff D., Sagawa K. Ventricular efficiency predicted by an analytical model. Am J Physiol. 1986 Jun;250(6 Pt 2):R1021–R1027. doi: 10.1152/ajpregu.1986.250.6.R1021. [DOI] [PubMed] [Google Scholar]
  4. Burkhoff D., Sugiura S., Yue D. T., Sagawa K. Contractility-dependent curvilinearity of end-systolic pressure-volume relations. Am J Physiol. 1987 Jun;252(6 Pt 2):H1218–H1227. doi: 10.1152/ajpheart.1987.252.6.H1218. [DOI] [PubMed] [Google Scholar]
  5. Crottogini A. J., Willshaw P., Barra J. G., Armentano R., Cabrera Fischer E. I., Pichel R. H. Inconsistency of the slope and the volume intercept of the end-systolic pressure-volume relationship as individual indexes of inotropic state in conscious dogs: presentation of an index combining both variables. Circulation. 1987 Nov;76(5):1115–1126. doi: 10.1161/01.cir.76.5.1115. [DOI] [PubMed] [Google Scholar]
  6. Elzinga G., Piene H., de Jong J. P. Left and right ventricular pump function and consequences of having two pumps in one heart. A study on the isolated cat heart. Circ Res. 1980 Apr;46(4):564–574. doi: 10.1161/01.res.46.4.564. [DOI] [PubMed] [Google Scholar]
  7. Freeman G. L. Improved cardiac performance secondary to dobutamine: the role of ventricular-vascular coupling. J Am Coll Cardiol. 1990 Apr;15(5):1136–1137. doi: 10.1016/0735-1097(90)90254-m. [DOI] [PubMed] [Google Scholar]
  8. Glower D. D., Spratt J. A., Snow N. D., Kabas J. S., Davis J. W., Olsen C. O., Tyson G. S., Sabiston D. C., Jr, Rankin J. S. Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation. 1985 May;71(5):994–1009. doi: 10.1161/01.cir.71.5.994. [DOI] [PubMed] [Google Scholar]
  9. Goto Y., Slinker B. K., LeWinter M. M. Decreased contractile efficiency and increased nonmechanical energy cost in hyperthyroid rabbit heart. Relation between O2 consumption and systolic pressure-volume area or force-time integral. Circ Res. 1990 Apr;66(4):999–1011. doi: 10.1161/01.res.66.4.999. [DOI] [PubMed] [Google Scholar]
  10. Hansen D. E., Cahill P. D., DeCampli W. M., Harrison D. C., Derby G. C., Mitchell R. S., Miller D. C. Valvular-ventricular interaction: importance of the mitral apparatus in canine left ventricular systolic performance. Circulation. 1986 Jun;73(6):1310–1320. doi: 10.1161/01.cir.73.6.1310. [DOI] [PubMed] [Google Scholar]
  11. Hansen D. E., Cahill P. D., Derby G. C., Miller D. C. Relative contributions of the anterior and posterior mitral chordae tendineae to canine global left ventricular systolic function. J Thorac Cardiovasc Surg. 1987 Jan;93(1):45–55. [PubMed] [Google Scholar]
  12. Hansen D. E., Sarris G. E., Niczyporuk M. A., Derby G. C., Cahill P. D., Miller D. C. Physiologic role of the mitral apparatus in left ventricular regional mechanics, contraction synergy, and global systolic performance. J Thorac Cardiovasc Surg. 1989 Apr;97(4):521–533. [PubMed] [Google Scholar]
  13. Kass D. A., Beyar R., Lankford E., Heard M., Maughan W. L., Sagawa K. Influence of contractile state on curvilinearity of in situ end-systolic pressure-volume relations. Circulation. 1989 Jan;79(1):167–178. doi: 10.1161/01.cir.79.1.167. [DOI] [PubMed] [Google Scholar]
  14. Kono A., Maughan W. L., Sunagawa K., Hamilton K., Sagawa K., Weisfeldt M. L. The use of left ventricular end-ejection pressure and peak pressure in the estimation of the end-systolic pressure-volume relationship. Circulation. 1984 Dec;70(6):1057–1065. doi: 10.1161/01.cir.70.6.1057. [DOI] [PubMed] [Google Scholar]
  15. Little W. C., Cheng C. P., Peterson T., Vinten-Johansen J. Response of the left ventricular end-systolic pressure-volume relation in conscious dogs to a wide range of contractile states. Circulation. 1988 Sep;78(3):736–745. doi: 10.1161/01.cir.78.3.736. [DOI] [PubMed] [Google Scholar]
  16. Little W. C., Rassi A., Jr, Freeman G. L. Comparison of effects of dobutamine and ouabain on left ventricular contraction and relaxation in closed-chest dogs. J Clin Invest. 1987 Sep;80(3):613–620. doi: 10.1172/JCI113113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Little W. C. The left ventricular dP/dtmax-end-diastolic volume relation in closed-chest dogs. Circ Res. 1985 Jun;56(6):808–815. doi: 10.1161/01.res.56.6.808. [DOI] [PubMed] [Google Scholar]
  18. Myhre E. S., Johansen A., Bjørnstad J., Piene H. The effect of contractility and preload on matching between the canine left ventricle and afterload. Circulation. 1986 Jan;73(1):161–171. doi: 10.1161/01.cir.73.1.161. [DOI] [PubMed] [Google Scholar]
  19. Nozawa T., Yasumura Y., Futaki S., Tanaka N., Uenishi M., Suga H. Efficiency of energy transfer from pressure-volume area to external mechanical work increases with contractile state and decreases with afterload in the left ventricle of the anesthetized closed-chest dog. Circulation. 1988 May;77(5):1116–1124. doi: 10.1161/01.cir.77.5.1116. [DOI] [PubMed] [Google Scholar]
  20. RUSHMER R. F. Initial phase of ventricular systole: asynchronous contraction. Am J Physiol. 1956 Jan;184(1):188–194. doi: 10.1152/ajplegacy.1955.184.1.188. [DOI] [PubMed] [Google Scholar]
  21. Rankin J. S., McHale P. A., Arentzen C. E., Ling D., Greenfield J. C., Jr, Anderson R. W. The three-dimensional dynamic geometry of the left ventricle in the conscious dog. Circ Res. 1976 Sep;39(3):304–313. doi: 10.1161/01.res.39.3.304. [DOI] [PubMed] [Google Scholar]
  22. Sarris G. E., Cahill P. D., Hansen D. E., Derby G. C., Miller D. C. Restoration of left ventricular systolic performance after reattachment of the mitral chordae tendineae. The importance of valvular-ventricular interaction. J Thorac Cardiovasc Surg. 1988 Jun;95(6):969–979. [PubMed] [Google Scholar]
  23. Sodums M. T., Badke F. R., Starling M. R., Little W. C., O'Rourke R. A. Evaluation of left ventricular contractile performance utilizing end-systolic pressure-volume relationships in conscious dogs. Circ Res. 1984 Jun;54(6):731–739. doi: 10.1161/01.res.54.6.731. [DOI] [PubMed] [Google Scholar]
  24. Spence P. A., Peniston C. M., David T. E., Mihic N., Jabr A. K., Narini P., Salerno T. A. Toward a better understanding of the etiology of left ventricular dysfunction after mitral valve replacement: an experimental study with possible clinical implications. Ann Thorac Surg. 1986 Apr;41(4):363–371. doi: 10.1016/s0003-4975(10)62688-4. [DOI] [PubMed] [Google Scholar]
  25. Spence P. A., Peniston C. M., Mihic N., David T. E., Jabr A. K., Archer D., Salerno T. A. A physiological approach to surgery for acute rupture of the papillary muscle. Ann Thorac Surg. 1986 Jul;42(1):27–30. doi: 10.1016/s0003-4975(10)61831-0. [DOI] [PubMed] [Google Scholar]
  26. Spratt J. A., Tyson G. S., Glower D. D., Davis J. W., Muhlbaier L. H., Olsen C. O., Rankin J. S. The end-systolic pressure-volume relationship in conscious dogs. Circulation. 1987 Jun;75(6):1295–1309. doi: 10.1161/01.cir.75.6.1295. [DOI] [PubMed] [Google Scholar]
  27. Suga H., Goto Y., Yasumura Y., Nozawa T., Futaki S., Tanaka N., Uenishi M. O2 consumption of dog heart under decreased coronary perfusion and propranolol. Am J Physiol. 1988 Feb;254(2 Pt 2):H292–H303. doi: 10.1152/ajpheart.1988.254.2.H292. [DOI] [PubMed] [Google Scholar]
  28. Suga H., Hayashi T., Shirahata M., Ninomiya I. Critical evaluation of left ventricular systolic pressure volume areas as predictor of oxygen consumption rate. Jpn J Physiol. 1980;30(6):907–919. doi: 10.2170/jjphysiol.30.907. [DOI] [PubMed] [Google Scholar]
  29. Suga H., Hisano R., Ninomiya I. Digital on-line computation of a predictor of cardiac oxygen consumption. Left ventricular systolic pressure volume area. Jpn Heart J. 1982 Sep;23(5):749–758. doi: 10.1536/ihj.23.749. [DOI] [PubMed] [Google Scholar]
  30. Suga H. Total mechanical energy of a ventricle model and cardiac oxygen consumption. Am J Physiol. 1979 Mar;236(3):H498–H505. doi: 10.1152/ajpheart.1979.236.3.H498. [DOI] [PubMed] [Google Scholar]
  31. Sunagawa K., Maughan W. L., Burkhoff D., Sagawa K. Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol. 1983 Nov;245(5 Pt 1):H773–H780. doi: 10.1152/ajpheart.1983.245.5.H773. [DOI] [PubMed] [Google Scholar]
  32. Sunagawa K., Maughan W. L., Sagawa K. Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res. 1985 Apr;56(4):586–595. doi: 10.1161/01.res.56.4.586. [DOI] [PubMed] [Google Scholar]
  33. Sunagawa K., Sagawa K., Maughan W. L. Ventricular interaction with the loading system. Ann Biomed Eng. 1984;12(2):163–189. doi: 10.1007/BF02584229. [DOI] [PubMed] [Google Scholar]
  34. Toorop G. P., Van den Horn G. J., Elzinga G., Westerhof N. Matching between feline left ventricle and arterial load: optimal external power or efficiency. Am J Physiol. 1988 Feb;254(2 Pt 2):H279–H285. doi: 10.1152/ajpheart.1988.254.2.H279. [DOI] [PubMed] [Google Scholar]
  35. van den Horn G. J., Westerhof N., Elzinga G. Feline left ventricle does not always operate at optimum power output. Am J Physiol. 1986 Jun;250(6 Pt 2):H961–H967. doi: 10.1152/ajpheart.1986.250.6.H961. [DOI] [PubMed] [Google Scholar]
  36. van den Horn G. J., Westerhof N., Elzinga G. Optimal power generation by the left ventricle. A study in the anesthetized open thorax cat. Circ Res. 1985 Feb;56(2):252–261. doi: 10.1161/01.res.56.2.252. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES