Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1991 Jan;87(1):293–298. doi: 10.1172/JCI114985

Decreased Gs alpha mRNA levels accompany the fall in Gs and adenylyl cyclase activities in compensated left ventricular hypertrophy. In heart failure, only the impairment in adenylyl cyclase activation progresses.

L A Chen 1, D E Vatner 1, S F Vatner 1, L Hittinger 1, C J Homcy 1
PMCID: PMC295048  PMID: 1824633

Abstract

We have previously reported that there is a global reduction in adenylyl cyclase associated with a decrement in Gs functional activity in cardiac sarcolemma from animals with pressure overload-induced hypertrophy and heart failure. This study was performed to determine whether hypertrophy alone in the absence of heart failure is sufficient to promote these changes and whether the superimposition of heart failure intensified these changes. Basal and stimulated adenylyl cyclase and Gs activity, as determined in the S49 cyc- reconstitution assay, were measured in sarcolemma from normal (NL), left ventricular hypertrophy (LVH) and heart failure (HF) animals. Simultaneously, we measured the mRNA level encoding for the Gs alpha subunit. These studies indicate that Gs activity and Gs alpha mRNA are decreased by approximately 30% both in the failing heart and even in the heart with compensated hypertrophy before heart failure develops (Gs activity, pmol cyclic AMP/10 min per microgram, NL 4.2 +/- 0.4, LVH 3.0 +/- 0.2, HF 3.2 +/- 0.3; Gs alpha mRNA, pg/10 micrograms RNA, NL 131 +/- 9.0, LVH 104 +/- 7.4, HF 97.4 +/- 9.1; P less than 0.05 as compared with NL for LVH and HF). Accompanying this decrement in Gs activity is a fall in adenylyl cyclase, both basal and stimulated. However, we also identified a further decrease in adenylyl cyclase without any additional change in Gs or in its alpha subunit mRNA level. This is seen only in the sarcolemma from animals with heart failure as compared with those with compensated LV hypertrophy (e.g., NaF-stimulated activity, pmol cyclic AMP/min per mg, NL 420.2 +/- 17.5, LVH 347.1 +/- 29.6, HF 244.2 +/- 27.3; P less than 0.05 compared with NL for LVH and HF, P less than 0.05 compared with LVH for HF). In summary, these studies indicate that both Gs and adenylyl cyclase activities fall in parallel with the development of LV hypertrophy followed by a further decrement in adenylyl cyclase, independent of Gs, in the setting of heart failure.

Full text

PDF
293

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bache R. J., Alyono D., Sublett E., Dai X. Z. Myocardial blood flow in left ventricular hypertrophy developing in young and adult dogs. Am J Physiol. 1986 Nov;251(5 Pt 2):H949–H956. doi: 10.1152/ajpheart.1986.251.5.H949. [DOI] [PubMed] [Google Scholar]
  2. Bache R. J., Dai X. Z., Alyono D., Vrobel T. R., Homans D. C. Myocardial blood flow during exercise in dogs with left ventricular hypertrophy produced by aortic banding and perinephritic hypertension. Circulation. 1987 Oct;76(4):835–842. doi: 10.1161/01.cir.76.4.835. [DOI] [PubMed] [Google Scholar]
  3. Bache R. J., Vrobel T. R., Arentzen C. E., Ring W. S. Effect of maximal coronary vasodilation on transmural myocardial perfusion during tachycardia in dogs with left ventricular hypertrophy. Circ Res. 1981 Sep;49(3):742–750. doi: 10.1161/01.res.49.3.742. [DOI] [PubMed] [Google Scholar]
  4. Bache R. J., Vrobel T. R., Ring W. S., Emery R. W., Andersen R. W. Regional myocardial blood flow during exercise in dogs with chronic left ventricular hypertrophy. Circ Res. 1981 Jan;48(1):76–87. doi: 10.1161/01.res.48.1.76. [DOI] [PubMed] [Google Scholar]
  5. Bockaert J., Hunzicker-Dunn M., Birnbaumer L. Hormone-stimulated desensitization of hormone-dependent adenylyl cyclase. Dual action of luteninizing hormone on pig graafian follicle membranes. J Biol Chem. 1976 May 10;251(9):2653–2663. [PubMed] [Google Scholar]
  6. Bristow M. R., Ginsburg R., Minobe W., Cubicciotti R. S., Sageman W. S., Lurie K., Billingham M. E., Harrison D. C., Stinson E. B. Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med. 1982 Jul 22;307(4):205–211. doi: 10.1056/NEJM198207223070401. [DOI] [PubMed] [Google Scholar]
  7. Böhm M., Diet F., Feiler G., Kemkes B., Kreuzer E., Weinhold C., Erdmann E. Subsensitivity of the failing human heart to isoprenaline and milrinone is related to beta-adrenoceptor downregulation. J Cardiovasc Pharmacol. 1988 Dec;12(6):726–732. doi: 10.1097/00005344-198812000-00015. [DOI] [PubMed] [Google Scholar]
  8. Casey P. J., Gilman A. G. G protein involvement in receptor-effector coupling. J Biol Chem. 1988 Feb 25;263(6):2577–2580. [PubMed] [Google Scholar]
  9. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  10. Feldman A. M., Cates A. E., Bristow M. R., Van Dop C. Altered expression of alpha-subunits of G proteins in failing human hearts. J Mol Cell Cardiol. 1989 Apr;21(4):359–365. doi: 10.1016/0022-2828(89)90646-9. [DOI] [PubMed] [Google Scholar]
  11. Feldman A. M., Cates A. E., Veazey W. B., Hershberger R. E., Bristow M. R., Baughman K. L., Baumgartner W. A., Van Dop C. Increase of the 40,000-mol wt pertussis toxin substrate (G protein) in the failing human heart. J Clin Invest. 1988 Jul;82(1):189–197. doi: 10.1172/JCI113569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Feldman M. D., Copelas L., Gwathmey J. K., Phillips P., Warren S. E., Schoen F. J., Grossman W., Morgan J. P. Deficient production of cyclic AMP: pharmacologic evidence of an important cause of contractile dysfunction in patients with end-stage heart failure. Circulation. 1987 Feb;75(2):331–339. doi: 10.1161/01.cir.75.2.331. [DOI] [PubMed] [Google Scholar]
  13. Fowler M. B., Laser J. A., Hopkins G. L., Minobe W., Bristow M. R. Assessment of the beta-adrenergic receptor pathway in the intact failing human heart: progressive receptor down-regulation and subsensitivity to agonist response. Circulation. 1986 Dec;74(6):1290–1302. doi: 10.1161/01.cir.74.6.1290. [DOI] [PubMed] [Google Scholar]
  14. Fujii A. M., Gelpi R. J., Mirsky I., Vatner S. F. Systolic and diastolic dysfunction during atrial pacing in conscious dogs with left ventricular hypertrophy. Circ Res. 1988 Mar;62(3):462–470. doi: 10.1161/01.res.62.3.462. [DOI] [PubMed] [Google Scholar]
  15. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  16. Gonzalez I. L., Gorski J. L., Campen T. J., Dorney D. J., Erickson J. M., Sylvester J. E., Schmickel R. D. Variation among human 28S ribosomal RNA genes. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7666–7670. doi: 10.1073/pnas.82.22.7666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Higgins C. B., Vatner S. F., Eckberg D. L., Braunwald E. Alterations in the baroreceptor reflex in conscious dogs with heart failure. J Clin Invest. 1972 Apr;51(4):715–724. doi: 10.1172/JCI106865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hittinger L., Shannon R. P., Bishop S. P., Gelpi R. J., Vatner S. F. Subendomyocardial exhaustion of blood flow reserve and increased fibrosis in conscious dogs with heart failure. Circ Res. 1989 Oct;65(4):971–980. doi: 10.1161/01.res.65.4.971. [DOI] [PubMed] [Google Scholar]
  19. Hittinger L., Shannon R. P., Kohin S., Lader A. S., Manders W. T., Patrick T. A., Kelly P., Vatner S. F. Isoproterenol-induced alterations in myocardial blood flow, systolic and diastolic function in conscious dogs with heart failure. Circulation. 1989 Sep;80(3):658–668. doi: 10.1161/01.cir.80.3.658. [DOI] [PubMed] [Google Scholar]
  20. Hittinger L., Shannon R. P., Kohin S., Manders W. T., Kelly P., Vatner S. F. Exercise-induced subendocardial dysfunction in dogs with left ventricular hypertrophy. Circ Res. 1990 Feb;66(2):329–343. doi: 10.1161/01.res.66.2.329. [DOI] [PubMed] [Google Scholar]
  21. Holmer S. R., Stevens S., Homcy C. J. Tissue- and species-specific expression of inhibitory guanine nucleotide-binding proteins. Cloning of a full-length complementary DNA from canine heart. Circ Res. 1989 Oct;65(4):1136–1140. doi: 10.1161/01.res.65.4.1136. [DOI] [PubMed] [Google Scholar]
  22. Izumo S., Lompré A. M., Matsuoka R., Koren G., Schwartz K., Nadal-Ginard B., Mahdavi V. Myosin heavy chain messenger RNA and protein isoform transitions during cardiac hypertrophy. Interaction between hemodynamic and thyroid hormone-induced signals. J Clin Invest. 1987 Mar;79(3):970–977. doi: 10.1172/JCI112908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Longabaugh J. P., Vatner D. E., Vatner S. F., Homcy C. J. Decreased stimulatory guanosine triphosphate binding protein in dogs with pressure-overload left ventricular failure. J Clin Invest. 1988 Feb;81(2):420–424. doi: 10.1172/JCI113335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nadal-Ginard B., Mahdavi V. Molecular basis of cardiac performance. Plasticity of the myocardium generated through protein isoform switches. J Clin Invest. 1989 Dec;84(6):1693–1700. doi: 10.1172/JCI114351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ross E. M., Maguire M. E., Sturgill T. W., Biltonen R. L., Gilman A. G. Relationship between the beta-adrenergic receptor and adenylate cyclase. J Biol Chem. 1977 Aug 25;252(16):5761–5775. [PubMed] [Google Scholar]
  27. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
  28. Sibley D. R., Lefkowitz R. J. Molecular mechanisms of receptor desensitization using the beta-adrenergic receptor-coupled adenylate cyclase system as a model. Nature. 1985 Sep 12;317(6033):124–129. doi: 10.1038/317124a0. [DOI] [PubMed] [Google Scholar]
  29. Simpson P. Stimulation of hypertrophy of cultured neonatal rat heart cells through an alpha 1-adrenergic receptor and induction of beating through an alpha 1- and beta 1-adrenergic receptor interaction. Evidence for independent regulation of growth and beating. Circ Res. 1985 Jun;56(6):884–894. doi: 10.1161/01.res.56.6.884. [DOI] [PubMed] [Google Scholar]
  30. Sternweis P. C., Northup J. K., Smigel M. D., Gilman A. G. The regulatory component of adenylate cyclase. Purification and properties. J Biol Chem. 1981 Nov 25;256(22):11517–11526. [PubMed] [Google Scholar]
  31. Susanni E. E., Manders W. T., Knight D. R., Vatner D. E., Vatner S. F., Homcy C. J. One hour of myocardial ischemia decreases the activity of the stimulatory guanine-nucleotide regulatory protein Gs. Circ Res. 1989 Oct;65(4):1145–1150. doi: 10.1161/01.res.65.4.1145. [DOI] [PubMed] [Google Scholar]
  32. Vatner D. E., Homcy C. J., Sit S. P., Manders W. T., Vatner S. F. Effects of pressure overload, left ventricular hypertrophy on beta-adrenergic receptors, and responsiveness to catecholamines. J Clin Invest. 1984 May;73(5):1473–1482. doi: 10.1172/JCI111351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Vatner D. E., Lee D. L., Schwarz K. R., Longabaugh J. P., Fujii A. M., Vatner S. F., Homcy C. J. Impaired cardiac muscarinic receptor function in dogs with heart failure. J Clin Invest. 1988 Jun;81(6):1836–1842. doi: 10.1172/JCI113528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Vatner D. E., Vatner S. F., Fujii A. M., Homcy C. J. Loss of high affinity cardiac beta adrenergic receptors in dogs with heart failure. J Clin Invest. 1985 Dec;76(6):2259–2264. doi: 10.1172/JCI112235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Vatner D. E., Vatner S. F., Nejima J., Uemura N., Susanni E. E., Hintze T. H., Homcy C. J. Chronic norepinephrine elicits desensitization by uncoupling the beta-receptor. J Clin Invest. 1989 Dec;84(6):1741–1748. doi: 10.1172/JCI114357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vrobel T. R., Ring W. S., Anderson R. W., Emery R. W., Bache R. J. Effect of heart rate on myocardial blood flow in dogs with left ventricular hypertrophy. Am J Physiol. 1980 Nov;239(5):H621–H627. doi: 10.1152/ajpheart.1980.239.5.H621. [DOI] [PubMed] [Google Scholar]
  37. Yoshimasa T., Sibley D. R., Bouvier M., Lefkowitz R. J., Caron M. G. Cross-talk between cellular signalling pathways suggested by phorbol-ester-induced adenylate cyclase phosphorylation. Nature. 1987 May 7;327(6117):67–70. doi: 10.1038/327067a0. [DOI] [PubMed] [Google Scholar]
  38. de la Bastie D., Levitsky D., Rappaport L., Mercadier J. J., Marotte F., Wisnewsky C., Brovkovich V., Schwartz K., Lompré A. M. Function of the sarcoplasmic reticulum and expression of its Ca2(+)-ATPase gene in pressure overload-induced cardiac hypertrophy in the rat. Circ Res. 1990 Feb;66(2):554–564. doi: 10.1161/01.res.66.2.554. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES