Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1994 Aug;94(2):481–488. doi: 10.1172/JCI117359

Prolonged impairment of very late activating antigen-mediated T cell proliferation via the CD3 pathway after T cell-depleted allogeneic bone marrow transplantation.

K Sugita 1, Y Nojima 1, K Tachibana 1, R J Soiffer 1, C Murray 1, S F Schlossman 1, J Ritz 1, C Morimoto 1
PMCID: PMC295109  PMID: 7518837

Abstract

One of the major obstacles in allogeneic bone marrow transplantation (allo-BMT) is prolonged T cell dysfunction resulting in a variety of infectious complications in the months to years after hematologic engraftment. We previously showed that immobilized extracellular matrix (ECM) proteins such as fibronectin (FN), the CS-1 domain of FN, or collagen (CO) acted synergistically with immobilized anti-CD3 to induce T cell proliferation. In addition, the comitogenic effect of ECMs could be mimicked by immobilized mAb reactive with a common beta 1 chain (CD29) of very late activating (VLA) antigens which include ECM receptors. Since the interaction of T cells with ECMs appears to play an important role in the process of T cell reconstitution following allo-BMT, we examined the expression of VLA antigens (alpha 1-alpha 6, beta 1) and their functional roles in CD3-mediated T cell proliferation at various times after T cell depleted allo-BMT. VLA beta 1 as well as VLA alpha 4, alpha 5, and alpha 6 expression was lower than normal controls during the first 3 mo after allo-BMT and auto-BMT, whereas these expressions returned to normal levels by 4 mo after allo-BMT and auto-BMT. Although alpha 1 and alpha 2 were not expressed on lymphocytes from normal controls, these antigens were expressed on lymphocytes at the detectable levels (5-15%) from patients after allo-BMT and auto-BMT. Both CD29 and CD3 were expressed at normal levels on lymphocytes from patients > 3 mo after allo-BMT, whereas T cell interaction with ECM through VLA proteins or crosslinking of VLA beta 1 expressed by T cells with anti-CD29 mAb results in poor induction of CD3-mediated T cell proliferation for a prolonged period (> 1 yr) after allo-BMT. In contrast, T cell proliferation induced by crosslinking of anti-CD2 or anti-CD26 with anti-CD3 was almost fully recovered by 1 yr post-allo-BMT. After autologous BMT, impaired VLA-mediated T cell proliferation via the CD3 pathway after auto-BMT returned to normal levels within 1 yr despite no significant difference in CD3 and CD29 expression following either allo- or auto-BMT. The adhesion of T cells from post-allo-BMT patients to FN-coated plate was normal or increased compared to that of normal controls. Moreover, the induction of the tyrosine phosphorylation of pp105 protein by the ligation of VLA molecules was not impaired in allo-BMT patients. These results suggest that there are some other defects in the process of VLA-mediated signal transduction in such patients. Our results imply that disturbance of VLA function could explain, at least in part, the persistent immunoincompetent state after allo-BMT and may be involved in susceptibility to opportunistic infections after allo-BMT.

Full text

PDF
481

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson K., Storb R., Prentice R. L., Weiden P. L., Witherspoon R. P., Sullivan K., Noel D., Thomas E. D. Analysis of late infections in 89 long-term survivors of bone marrow transplantation. Blood. 1979 Apr;53(4):720–731. [PubMed] [Google Scholar]
  2. Bortin M. M., Rimm A. A. Increasing utilization of bone marrow transplantation. Transplantation. 1986 Sep;42(3):229–234. doi: 10.1097/00007890-198609000-00001. [DOI] [PubMed] [Google Scholar]
  3. Cardarelli P. M., Pierschbacher M. D. T-lymphocyte differentiation and the extracellular matrix: identification of a thymocyte subset that attaches specifically to fibronectin. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2647–2651. doi: 10.1073/pnas.83.8.2647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Damle N. K., Aruffo A. Vascular cell adhesion molecule 1 induces T-cell antigen receptor-dependent activation of CD4+T lymphocytes. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6403–6407. doi: 10.1073/pnas.88.15.6403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dang N. H., Torimoto Y., Deusch K., Schlossman S. F., Morimoto C. Comitogenic effect of solid-phase immobilized anti-1F7 on human CD4 T cell activation via CD3 and CD2 pathways. J Immunol. 1990 Jun 1;144(11):4092–4100. [PubMed] [Google Scholar]
  6. Dang N. H., Torimoto Y., Schlossman S. F., Morimoto C. Human CD4 helper T cell activation: functional involvement of two distinct collagen receptors, 1F7 and VLA integrin family. J Exp Med. 1990 Aug 1;172(2):649–652. doi: 10.1084/jem.172.2.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davis L. S., Oppenheimer-Marks N., Bednarczyk J. L., McIntyre B. W., Lipsky P. E. Fibronectin promotes proliferation of naive and memory T cells by signaling through both the VLA-4 and VLA-5 integrin molecules. J Immunol. 1990 Aug 1;145(3):785–793. [PubMed] [Google Scholar]
  8. Geppert T. D., Davis L. S., Gur H., Wacholtz M. C., Lipsky P. E. Accessory cell signals involved in T-cell activation. Immunol Rev. 1990 Oct;117:5–66. doi: 10.1111/j.1600-065x.1990.tb00566.x. [DOI] [PubMed] [Google Scholar]
  9. Guan J. L., Trevithick J. E., Hynes R. O. Fibronectin/integrin interaction induces tyrosine phosphorylation of a 120-kDa protein. Cell Regul. 1991 Nov;2(11):951–964. doi: 10.1091/mbc.2.11.951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hemler M. E. VLA proteins in the integrin family: structures, functions, and their role on leukocytes. Annu Rev Immunol. 1990;8:365–400. doi: 10.1146/annurev.iy.08.040190.002053. [DOI] [PubMed] [Google Scholar]
  11. Hynes R. O. Integrins: a family of cell surface receptors. Cell. 1987 Feb 27;48(4):549–554. doi: 10.1016/0092-8674(87)90233-9. [DOI] [PubMed] [Google Scholar]
  12. June C. H., Fletcher M. C., Ledbetter J. A., Schieven G. L., Siegel J. N., Phillips A. F., Samelson L. E. Inhibition of tyrosine phosphorylation prevents T-cell receptor-mediated signal transduction. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7722–7726. doi: 10.1073/pnas.87.19.7722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Keever C. A., Small T. N., Flomenberg N., Heller G., Pekle K., Black P., Pecora A., Gillio A., Kernan N. A., O'Reilly R. J. Immune reconstitution following bone marrow transplantation: comparison of recipients of T-cell depleted marrow with recipients of conventional marrow grafts. Blood. 1989 Apr;73(5):1340–1350. [PubMed] [Google Scholar]
  14. Klausner R. D., Samelson L. E. T cell antigen receptor activation pathways: the tyrosine kinase connection. Cell. 1991 Mar 8;64(5):875–878. doi: 10.1016/0092-8674(91)90310-u. [DOI] [PubMed] [Google Scholar]
  15. Kornberg L. J., Earp H. S., Turner C. E., Prockop C., Juliano R. L. Signal transduction by integrins: increased protein tyrosine phosphorylation caused by clustering of beta 1 integrins. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8392–8396. doi: 10.1073/pnas.88.19.8392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Korsmeyer S. J., Elfenbein G. J., Goldman C. K., Marshall S. L., Santos G. W., Waldmann T. A. B cell, helper T cell, and suppressor T cell abnormalities contribute to disordered immunoglobulin synthesis in patients following bone marrow transplantation. Transplantation. 1982 Feb;33(2):184–190. doi: 10.1097/00007890-198202000-00015. [DOI] [PubMed] [Google Scholar]
  17. Linsley P. S., Brady W., Grosmaire L., Aruffo A., Damle N. K., Ledbetter J. A. Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J Exp Med. 1991 Mar 1;173(3):721–730. doi: 10.1084/jem.173.3.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Matsuyama T., Yamada A., Kay J., Yamada K. M., Akiyama S. K., Schlossman S. F., Morimoto C. Activation of CD4 cells by fibronectin and anti-CD3 antibody. A synergistic effect mediated by the VLA-5 fibronectin receptor complex. J Exp Med. 1989 Oct 1;170(4):1133–1148. doi: 10.1084/jem.170.4.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mecham R. P. Laminin receptors. Annu Rev Cell Biol. 1991;7:71–91. doi: 10.1146/annurev.cb.07.110191.000443. [DOI] [PubMed] [Google Scholar]
  20. Meyers J. D. Infection in bone marrow transplant recipients. Am J Med. 1986 Jul 28;81(1A):27–38. doi: 10.1016/0002-9343(86)90511-5. [DOI] [PubMed] [Google Scholar]
  21. Mori T., Tsoi M. S., Gillis S., Santos E., Thomas E. D., Storb R. Cellular interactions in marrow-grafted patients. I. Impairment of cell-mediated lympholysis associated with graft-vs-host disease and the effect of interleukin 2. J Immunol. 1983 Feb;130(2):712–716. [PubMed] [Google Scholar]
  22. Morimoto C., Letvin N. L., Boyd A. W., Hagan M., Brown H. M., Kornacki M. M., Schlossman S. F. The isolation and characterization of the human helper inducer T cell subset. J Immunol. 1985 Jun;134(6):3762–3769. [PubMed] [Google Scholar]
  23. Morimoto C., Steinberg A. D., Letvin N. L., Hagan M., Takeuchi T., Daley J., Levine H., Schlossman S. F. A defect of immunoregulatory T cell subsets in systemic lupus erythematosus patients demonstrated with anti-2H4 antibody. J Clin Invest. 1987 Mar;79(3):762–768. doi: 10.1172/JCI112882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Morimoto C., Torimoto Y., Levinson G., Rudd C. E., Schrieber M., Dang N. H., Letvin N. L., Schlossman S. F. 1F7, a novel cell surface molecule, involved in helper function of CD4 cells. J Immunol. 1989 Dec 1;143(11):3430–3439. [PubMed] [Google Scholar]
  25. Mustelin T., Coggeshall K. M., Isakov N., Altman A. T cell antigen receptor-mediated activation of phospholipase C requires tyrosine phosphorylation. Science. 1990 Mar 30;247(4950):1584–1587. doi: 10.1126/science.2138816. [DOI] [PubMed] [Google Scholar]
  26. Nojima Y., Humphries M. J., Mould A. P., Komoriya A., Yamada K. M., Schlossman S. F., Morimoto C. VLA-4 mediates CD3-dependent CD4+ T cell activation via the CS1 alternatively spliced domain of fibronectin. J Exp Med. 1990 Oct 1;172(4):1185–1192. doi: 10.1084/jem.172.4.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nojima Y., Rothstein D. M., Sugita K., Schlossman S. F., Morimoto C. Ligation of VLA-4 on T cells stimulates tyrosine phosphorylation of a 105-kD protein. J Exp Med. 1992 Apr 1;175(4):1045–1053. doi: 10.1084/jem.175.4.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pirsch J. D., Maki D. G. Infectious complications in adults with bone marrow transplantation and T-cell depletion of donor marrow. Increased susceptibility to fungal infections. Ann Intern Med. 1986 May;104(5):619–631. doi: 10.7326/0003-4819-104-5-619. [DOI] [PubMed] [Google Scholar]
  29. Reinherz E. L., Acuto O., Fabbi M., Bensussan A., Milanese C., Royer H. D., Meuer S. C., Schlossman S. F. Clonotypic surface structure on human T lymphocytes: functional and biochemical analysis of the antigen receptor complex. Immunol Rev. 1984 Oct;81:95–129. doi: 10.1111/j.1600-065x.1984.tb01106.x. [DOI] [PubMed] [Google Scholar]
  30. Reinherz E. L., Morimoto C., Fitzgerald K. A., Hussey R. E., Daley J. F., Schlossman S. F. Heterogeneity of human T4+ inducer T cells defined by a monoclonal antibody that delineates two functional subpopulations. J Immunol. 1982 Jan;128(1):463–468. [PubMed] [Google Scholar]
  31. Rohatiner A., Gelber R., Schlossman S. F., Ritz J. Depletion of T cells from human bone marrow using monoclonal antibodies and rabbit complement. A quantitative and functional analysis. Transplantation. 1986 Jul;42(1):73–80. doi: 10.1097/00007890-198607000-00016. [DOI] [PubMed] [Google Scholar]
  32. Samelson L. E., Patel M. D., Weissman A. M., Harford J. B., Klausner R. D. Antigen activation of murine T cells induces tyrosine phosphorylation of a polypeptide associated with the T cell antigen receptor. Cell. 1986 Sep 26;46(7):1083–1090. doi: 10.1016/0092-8674(86)90708-7. [DOI] [PubMed] [Google Scholar]
  33. Sanders M. E., Makgoba M. W., Shaw S. Human naive and memory T cells: reinterpretation of helper-inducer and suppressor-inducer subsets. Immunol Today. 1988 Jul-Aug;9(7-8):195–199. doi: 10.1016/0167-5699(88)91212-1. [DOI] [PubMed] [Google Scholar]
  34. Schaller M. D., Borgman C. A., Cobb B. S., Vines R. R., Reynolds A. B., Parsons J. T. pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5192–5196. doi: 10.1073/pnas.89.11.5192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Secrist J. P., Karnitz L., Abraham R. T. T-cell antigen receptor ligation induces tyrosine phosphorylation of phospholipase C-gamma 1. J Biol Chem. 1991 Jul 5;266(19):12135–12139. [PubMed] [Google Scholar]
  36. Shimizu Y., van Seventer G. A., Horgan K. J., Shaw S. Costimulation of proliferative responses of resting CD4+ T cells by the interaction of VLA-4 and VLA-5 with fibronectin or VLA-6 with laminin. J Immunol. 1990 Jul 1;145(1):59–67. [PubMed] [Google Scholar]
  37. Soiffer R. J., Bosserman L., Murray C., Cochran K., Daley J., Ritz J. Reconstitution of T-cell function after CD6-depleted allogeneic bone marrow transplantation. Blood. 1990 May 15;75(10):2076–2084. [PubMed] [Google Scholar]
  38. Springer T. A. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
  39. Sugita K., Soiffer R. J., Murray C., Schlossman S. F., Ritz J., Morimoto C. The phenotype and reconstitution of immunoregulatory T cell subsets after T cell-depleted allogeneic and autologous bone marrow transplantation. Transplantation. 1994 May 27;57(10):1465–1473. [PubMed] [Google Scholar]
  40. Thomas E. D. Karnofsky Memorial Lecture. Marrow transplantation for malignant diseases. J Clin Oncol. 1983 Sep;1(9):517–531. doi: 10.1200/JCO.1983.1.9.517. [DOI] [PubMed] [Google Scholar]
  41. Utsumi K., Sawada M., Narumiya S., Nagamine J., Sakata T., Iwagami S., Kita Y., Teraoka H., Hirano H., Ogata M. Adhesion of immature thymocytes to thymic stromal cells through fibronectin molecules and its significance for the induction of thymocyte differentiation. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5685–5689. doi: 10.1073/pnas.88.13.5685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Van Seventer G. A., Shimizu Y., Horgan K. J., Shaw S. The LFA-1 ligand ICAM-1 provides an important costimulatory signal for T cell receptor-mediated activation of resting T cells. J Immunol. 1990 Jun 15;144(12):4579–4586. [PubMed] [Google Scholar]
  43. Weaver C. T., Unanue E. R. The costimulatory function of antigen-presenting cells. Immunol Today. 1990 Feb;11(2):49–55. doi: 10.1016/0167-5699(90)90018-5. [DOI] [PubMed] [Google Scholar]
  44. Weiss A., Koretzky G., Schatzman R. C., Kadlecek T. Functional activation of the T-cell antigen receptor induces tyrosine phosphorylation of phospholipase C-gamma 1. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5484–5488. doi: 10.1073/pnas.88.13.5484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Welte K., Keever C. A., Levick J., Bonilla M. A., Merluzzi V. J., Mertelsmann R., Evans R., O'Reilly R. J. Interleukin-2 production and response to interleukin-2 by peripheral blood mononuclear cells from patients after bone marrow transplantation: II. Patients receiving soybean lectin-separated and T cell-depleted bone marrow. Blood. 1987 Nov;70(5):1595–1603. [PubMed] [Google Scholar]
  46. Wingard J. R. Advances in the management of infectious complications after bone marrow transplantation. Bone Marrow Transplant. 1990 Dec;6(6):371–383. [PubMed] [Google Scholar]
  47. Witherspoon R. P., Lum L. G., Storb R., Thomas E. D. In vitro regulation of immunoglobulin synthesis after human marrow transplantation. II. Deficient T and non-T lymphocyte function within 3-4 months of allogeneic, syngeneic, or autologous marrow grafting for hematologic malignancy. Blood. 1982 Apr;59(4):844–850. [PubMed] [Google Scholar]
  48. Yamada A., Nojima Y., Sugita K., Dang N. H., Schlossman S. F., Morimoto C. Cross-linking of VLA/CD29 molecule has a co-mitogenic effect with anti-CD3 on CD4 cell activation in serum-free culture system. Eur J Immunol. 1991 Feb;21(2):319–325. doi: 10.1002/eji.1830210212. [DOI] [PubMed] [Google Scholar]
  49. Yamagami M., McFadden P. W., Koethe S. M., Ratanatharathorn V., Lum L. G. Failure of T cell receptor-anti-CD3 monoclonal antibody interaction in T cells from marrow recipients to induce increases in intracellular ionized calcium. J Clin Invest. 1990 Oct;86(4):1347–1351. doi: 10.1172/JCI114845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zander A. R., Reuben J. M., Johnston D., Vellekoop L., Dicke K. A., Yau J. C., Hersh E. M. Immune recovery following allogeneic bone marrow transplantation. Transplantation. 1985 Aug;40(2):177–183. doi: 10.1097/00007890-198508000-00014. [DOI] [PubMed] [Google Scholar]
  51. van Noesel C., Miedema F., Brouwer M., de Rie M. A., Aarden L. A., van Lier R. A. Regulatory properties of LFA-1 alpha and beta chains in human T-lymphocyte activation. Nature. 1988 Jun 30;333(6176):850–852. doi: 10.1038/333850a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES