Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1994 Sep;94(3):978–984. doi: 10.1172/JCI117464

Evidence for direct local effect of angiotensin in vascular hypertrophy. In vivo gene transfer of angiotensin converting enzyme.

R Morishita 1, G H Gibbons 1, K E Ellison 1, W Lee 1, L Zhang 1, H Yu 1, Y Kaneda 1, T Ogihara 1, V J Dzau 1
PMCID: PMC295142  PMID: 8083382

Abstract

In vitro studies have demonstrated that angiotensin (Ang) II directly stimulates vascular smooth muscle cell (VSMC) growth. However, it is still unclear if Ang II exerts a direct effect on vascular hypertrophy in vivo independent of its effect on blood pressure. In vivo gene transfer provides the opportunity to assess the effects of increased activity of the vascular angiotensin system in the intact animal while avoiding an increase in circulating angiotensin or in blood pressure. Accordingly, we transfected the human angiotensin converting enzyme (ACE) vector into intact rat carotid arteries by the hemagglutinating virus of Japan-liposome method. 3 d after transfection, we detected increased ACE activity in the transfected artery. Immunohistochemistry localized immunoreactive ACE in the medial VSMC as well as in the intimal endothelial cells. The increase in vascular ACE activity was associated with a parallel increase in DNA synthesis as assessed by BrdU (bromo-deoxyuridine) index and vascular DNA content. This increase in DNA synthesis was abolished by the in vivo administration of an Ang II receptor-specific antagonist (DuP 753). Morphometry at 2 wk after transfection revealed an increase in the wall to lumen ratio of the ACE-transfected blood vessel as compared with control vector transfected vessels. This was accompanied by increases in protein and DNA contents without an increase in cell number. Local transfection of ACE vector did not result in systemic effects such as increased blood pressure, heart rate, or serum ACE activity. These morphological changes were abolished by the administration of the Ang II receptor antagonist. In this study, we used in vivo gene transfer to increase local expression of vascular angiotensin converting enzyme and provided proof that increased autocrine/paracrine angiotensin can directly cause vascular hypertrophy independent of systemic factors and hemodynamic effects. This approach has important potentials for defining the role of autocrine/paracrine substances in vascular biology and hypertension.

Full text

PDF
978

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berk B. C., Vekshtein V., Gordon H. M., Tsuda T. Angiotensin II-stimulated protein synthesis in cultured vascular smooth muscle cells. Hypertension. 1989 Apr;13(4):305–314. doi: 10.1161/01.hyp.13.4.305. [DOI] [PubMed] [Google Scholar]
  2. Campbell D. J. Circulating and tissue angiotensin systems. J Clin Invest. 1987 Jan;79(1):1–6. doi: 10.1172/JCI112768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dzau V. J., Gibbons G. H., Pratt R. E. Molecular mechanisms of vascular renin-angiotensin system in myointimal hyperplasia. Hypertension. 1991 Oct;18(4 Suppl):II100–II105. doi: 10.1161/01.hyp.18.4_suppl.ii100. [DOI] [PubMed] [Google Scholar]
  4. Dzau V. J. The role of mechanical and humoral factors in growth regulation of vascular smooth muscle and cardiac myocytes. Curr Opin Nephrol Hypertens. 1993 Jan;2(1):27–32. doi: 10.1097/00041552-199301000-00004. [DOI] [PubMed] [Google Scholar]
  5. Geisterfer A. A., Peach M. J., Owens G. K. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res. 1988 Apr;62(4):749–756. doi: 10.1161/01.res.62.4.749. [DOI] [PubMed] [Google Scholar]
  6. Gibbons G. H., Pratt R. E., Dzau V. J. Vascular smooth muscle cell hypertrophy vs. hyperplasia. Autocrine transforming growth factor-beta 1 expression determines growth response to angiotensin II. J Clin Invest. 1992 Aug;90(2):456–461. doi: 10.1172/JCI115881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Griffin S. A., Brown W. C., MacPherson F., McGrath J. C., Wilson V. G., Korsgaard N., Mulvany M. J., Lever A. F. Angiotensin II causes vascular hypertrophy in part by a non-pressor mechanism. Hypertension. 1991 May;17(5):626–635. doi: 10.1161/01.hyp.17.5.626. [DOI] [PubMed] [Google Scholar]
  8. Kaneda Y., Iwai K., Uchida T. Increased expression of DNA cointroduced with nuclear protein in adult rat liver. Science. 1989 Jan 20;243(4889):375–378. doi: 10.1126/science.2911748. [DOI] [PubMed] [Google Scholar]
  9. Kaneda Y., Iwai K., Uchida T. Introduction and expression of the human insulin gene in adult rat liver. J Biol Chem. 1989 Jul 25;264(21):12126–12129. [PubMed] [Google Scholar]
  10. Kato H., Suzuki H., Tajima S., Ogata Y., Tominaga T., Sato A., Saruta T. Angiotensin II stimulates collagen synthesis in cultured vascular smooth muscle cells. J Hypertens. 1991 Jan;9(1):17–22. [PubMed] [Google Scholar]
  11. Kauffman R. F., Bean J. S., Zimmerman K. M., Brown R. F., Steinberg M. I. Losartan, a nonpeptide angiotensin II (Ang II) receptor antagonist, inhibits neointima formation following balloon injury to rat carotid arteries. Life Sci. 1991;49(25):PL223–PL228. doi: 10.1016/0024-3205(91)90298-p. [DOI] [PubMed] [Google Scholar]
  12. Korsgaard N., Mulvany M. J. Cellular hypertrophy in mesenteric resistance vessels from renal hypertensive rats. Hypertension. 1988 Aug;12(2):162–167. doi: 10.1161/01.hyp.12.2.162. [DOI] [PubMed] [Google Scholar]
  13. Lee R. M., Berecek K. H., Tsoporis J., McKenzie R., Triggle C. R. Prevention of hypertension and vascular changes by captopril treatment. Hypertension. 1991 Feb;17(2):141–150. doi: 10.1161/01.hyp.17.2.141. [DOI] [PubMed] [Google Scholar]
  14. Lever A. F. Angiotensin II, angiotensin-converting enzyme inhibitors, and blood vessel structure. Am J Med. 1992 Apr 27;92(4B):35S–38S. doi: 10.1016/0002-9343(92)90145-2. [DOI] [PubMed] [Google Scholar]
  15. Levy B. I., Michel J. B., Salzmann J. L., Azizi M., Poitevin P., Safar M., Camilleri J. P. Effects of chronic inhibition of converting enzyme on mechanical and structural properties of arteries in rat renovascular hypertension. Circ Res. 1988 Jul;63(1):227–239. doi: 10.1161/01.res.63.1.227. [DOI] [PubMed] [Google Scholar]
  16. Morishita R., Gibbons G. H., Ellison K. E., Nakajima M., Zhang L., Kaneda Y., Ogihara T., Dzau V. J. Single intraluminal delivery of antisense cdc2 kinase and proliferating-cell nuclear antigen oligonucleotides results in chronic inhibition of neointimal hyperplasia. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8474–8478. doi: 10.1073/pnas.90.18.8474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Morishita R., Gibbons G. H., Kaneda Y., Ogihara T., Dzau V. J. Novel and effective gene transfer technique for study of vascular renin angiotensin system. J Clin Invest. 1993 Jun;91(6):2580–2585. doi: 10.1172/JCI116496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Naftilan A. J., Pratt R. E., Dzau V. J. Induction of platelet-derived growth factor A-chain and c-myc gene expressions by angiotensin II in cultured rat vascular smooth muscle cells. J Clin Invest. 1989 Apr;83(4):1419–1424. doi: 10.1172/JCI114032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Okamura T., Miyazaki M., Inagami T., Toda N. Vascular renin-angiotensin system in two-kidney, one clip hypertensive rats. Hypertension. 1986 Jul;8(7):560–565. doi: 10.1161/01.hyp.8.7.560. [DOI] [PubMed] [Google Scholar]
  20. Owens G. K. Differential effects of antihypertensive drug therapy on vascular smooth muscle cell hypertrophy, hyperploidy, and hyperplasia in the spontaneously hypertensive rat. Circ Res. 1985 Apr;56(4):525–536. doi: 10.1161/01.res.56.4.525. [DOI] [PubMed] [Google Scholar]
  21. Owens G. K., Geisterfer A. A., Yang Y. W., Komoriya A. Transforming growth factor-beta-induced growth inhibition and cellular hypertrophy in cultured vascular smooth muscle cells. J Cell Biol. 1988 Aug;107(2):771–780. doi: 10.1083/jcb.107.2.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Owens G. K. Influence of blood pressure on development of aortic medial smooth muscle hypertrophy in spontaneously hypertensive rats. Hypertension. 1987 Feb;9(2):178–187. doi: 10.1161/01.hyp.9.2.178. [DOI] [PubMed] [Google Scholar]
  23. Owens G. K., Schwartz S. M. Alterations in vascular smooth muscle mass in the spontaneously hypertensive rat. Role of cellular hypertrophy, hyperploidy, and hyperplasia. Circ Res. 1982 Sep;51(3):280–289. doi: 10.1161/01.res.51.3.280. [DOI] [PubMed] [Google Scholar]
  24. Paul M., Ganten D. The molecular basis of cardiovascular hypertrophy: the role of the renin-angiotensin system. J Cardiovasc Pharmacol. 1992;19 (Suppl 5):S51–S58. [PubMed] [Google Scholar]
  25. Powell J. S., Clozel J. P., Müller R. K., Kuhn H., Hefti F., Hosang M., Baumgartner H. R. Inhibitors of angiotensin-converting enzyme prevent myointimal proliferation after vascular injury. Science. 1989 Jul 14;245(4914):186–188. doi: 10.1126/science.2526370. [DOI] [PubMed] [Google Scholar]
  26. Rakugi H., Kim D. K., Krieger J. E., Wang D. S., Dzau V. J., Pratt R. E. Induction of angiotensin converting enzyme in the neointima after vascular injury. Possible role in restenosis. J Clin Invest. 1994 Jan;93(1):339–346. doi: 10.1172/JCI116965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schelling P., Fischer H., Ganten D. Angiotensin and cell growth: a link to cardiovascular hypertrophy? J Hypertens. 1991 Jan;9(1):3–15. [PubMed] [Google Scholar]
  28. Schunkert H., Dzau V. J., Tang S. S., Hirsch A. T., Apstein C. S., Lorell B. H. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation. J Clin Invest. 1990 Dec;86(6):1913–1920. doi: 10.1172/JCI114924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Scott-Burden T., Hahn A. W., Resink T. J., Bühler F. R. Modulation of extracellular matrix by angiotensin II: stimulated glycoconjugate synthesis and growth in vascular smooth muscle cells. J Cardiovasc Pharmacol. 1990;16 (Suppl 4):S36–S41. [PubMed] [Google Scholar]
  30. Shiota N., Miyazaki M., Okunishi H. Increase of angiotensin converting enzyme gene expression in the hypertensive aorta. Hypertension. 1992 Aug;20(2):168–174. doi: 10.1161/01.hyp.20.2.168. [DOI] [PubMed] [Google Scholar]
  31. Soltis E. E., Jewell A. L., Dwoskin L. P., Cassis L. A. Acute and chronic effects of losartan (DuP 753) on blood pressure and vascular reactivity in normotensive rats. Clin Exp Hypertens. 1993 Jan;15(1):171–184. doi: 10.3109/10641969309041618. [DOI] [PubMed] [Google Scholar]
  32. Soubrier F., Alhenc-Gelas F., Hubert C., Allegrini J., John M., Tregear G., Corvol P. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9386–9390. doi: 10.1073/pnas.85.24.9386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wang D. H., Prewitt R. L. Captopril reduces aortic and microvascular growth in hypertensive and normotensive rats. Hypertension. 1990 Jan;15(1):68–77. doi: 10.1161/01.hyp.15.1.68. [DOI] [PubMed] [Google Scholar]
  34. Yu H., Rakugi H., Higaki J., Morishita R., Mikami H., Ogihara T. The role of activated vascular angiotensin II generation in vascular hypertrophy in one-kidney, one clip hypertensive rats. J Hypertens. 1993 Dec;11(12):1347–1355. doi: 10.1097/00004872-199312000-00005. [DOI] [PubMed] [Google Scholar]
  35. van Kleef E. M., Smits J. F., De Mey J. G., Cleutjens J. P., Lombardi D. M., Schwartz S. M., Daemen M. J. Alpha 1-adrenoreceptor blockade reduces the angiotensin II-induced vascular smooth muscle cell DNA synthesis in the rat thoracic aorta and carotid artery. Circ Res. 1992 Jun;70(6):1122–1127. doi: 10.1161/01.res.70.6.1122. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES