Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1991 Apr;87(4):1234–1240. doi: 10.1172/JCI115124

The role of von Willebrand factor and fibrinogen in platelet aggregation under varying shear stress.

Y Ikeda 1, M Handa 1, K Kawano 1, T Kamata 1, M Murata 1, Y Araki 1, H Anbo 1, Y Kawai 1, K Watanabe 1, I Itagaki 1, et al.
PMCID: PMC295144  PMID: 2010539

Abstract

Exposure of platelets to shear stress leads to aggregation in the absence of exogenous agonists. We have now found that different adhesive proteins and platelet membrane glycoproteins are involved in aggregation depending on the shear stress conditions and the concentration of divalent cations in the medium. When blood is collected with trisodium citrate as anticoagulant, which causes a decrease in the levels of external ionized calcium ([Ca2+]o), platelet aggregation can be induced under low shear force (12 dyn/cm2) and is mediated by fibrinogen binding to the glycoprotein IIb-IIIa complex. Aggregates formed under these conditions are not stable, and when shear force is increased to 68 dyn/cm2, disaggregation results. By contrast, platelets from blood collected with hirudin as anticoagulant, wherein [Ca2+]o is within normal plasma levels, do not undergo low shear-induced aggregation; however, after exposure to a shear force above 80 dyn/cm2, aggregation is observed but only when von Willebrand factor is present and can interact with both its platelet binding sites, glycoprotein Ib-IX and glycoprotein IIb-IIIa. Fibrinogen is not involved in high shear-induced aggregation which, in fact, occurs normally in patients with severe afibrinogenemia. Thus, von Willebrand factor in the absence of exogenous agonists can mediate platelet aggregation in experimental conditions that may mimic the hemorheological situation of partially occluded arteries. This pathway of platelet aggregation involving only one adhesive ligand and two membrane adhesion receptors may play a relevant role in thrombogenesis.

Full text

PDF
1234

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asch E., Podack E. Vitronectin binds to activated human platelets and plays a role in platelet aggregation. J Clin Invest. 1990 May;85(5):1372–1378. doi: 10.1172/JCI114581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Back L. D., Radbill J. R., Crawford D. W. Analysis of pulsatile, viscous blood flow through diseased coronary arteries of man. J Biomech. 1977;10(5-6):339–353. doi: 10.1016/0021-9290(77)90006-9. [DOI] [PubMed] [Google Scholar]
  3. Belval T., Hellums J. D., Solis R. T. The kinetics of platelet aggregation induced by fluid-shearing stress. Microvasc Res. 1984 Nov;28(3):279–288. doi: 10.1016/0026-2862(84)90001-3. [DOI] [PubMed] [Google Scholar]
  4. Bennett J. S., Vilaire G., Cines D. B. Identification of the fibrinogen receptor on human platelets by photoaffinity labeling. J Biol Chem. 1982 Jul 25;257(14):8049–8054. [PubMed] [Google Scholar]
  5. Berliner S., Niiya K., Roberts J. R., Houghten R. A., Ruggeri Z. M. Generation and characterization of peptide-specific antibodies that inhibit von Willebrand factor binding to glycoprotein IIb-IIIa without interacting with other adhesive molecules. Selectivity is conferred by Pro1743 and other amino acid residues adjacent to the sequence Arg1744-Gly1745-Asp1746. J Biol Chem. 1988 Jun 5;263(16):7500–7505. [PubMed] [Google Scholar]
  6. CHAPMAN I. MORPHOGENESIS OF OCCLUDING CORONARY ARTERY THROMBOSIS. Arch Pathol. 1965 Sep;80:256–261. [PubMed] [Google Scholar]
  7. Coller B. S. Interaction of normal, thrombasthenic, and Bernard-Soulier platelets with immobilized fibrinogen: defective platelet-fibrinogen interaction in thrombasthenia. Blood. 1980 Feb;55(2):169–178. [PubMed] [Google Scholar]
  8. Davies M. J., Thomas A. C., Knapman P. A., Hangartner J. R. Intramyocardial platelet aggregation in patients with unstable angina suffering sudden ischemic cardiac death. Circulation. 1986 Mar;73(3):418–427. doi: 10.1161/01.cir.73.3.418. [DOI] [PubMed] [Google Scholar]
  9. De Marco L., Girolami A., Russell S., Ruggeri Z. M. Interaction of asialo von Willebrand factor with glycoprotein Ib induces fibrinogen binding to the glycoprotein IIb/IIIa complex and mediates platelet aggregation. J Clin Invest. 1985 Apr;75(4):1198–1203. doi: 10.1172/JCI111816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. De Marco L., Girolami A., Zimmerman T. S., Ruggeri Z. M. von Willebrand factor interaction with the glycoprotein IIb/IIa complex. Its role in platelet function as demonstrated in patients with congenital afibrinogenemia. J Clin Invest. 1986 Apr;77(4):1272–1277. doi: 10.1172/JCI112430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. De Marco L., Mazzuccato M., Grazia Del Ben M., Budde U., Federici A. B., Girolami A., Ruggeri Z. M. Type IIB von Willebrand factor with normal sialic acid content induces platelet aggregation in the absence of ristocetin. Role of platelet activation, fibrinogen, and two distinct membrane receptors. J Clin Invest. 1987 Aug;80(2):475–482. doi: 10.1172/JCI113095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ey P. L., Prowse S. J., Jenkin C. R. Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose. Immunochemistry. 1978 Jul;15(7):429–436. doi: 10.1016/0161-5890(78)90070-6. [DOI] [PubMed] [Google Scholar]
  13. Falk E. Unstable angina with fatal outcome: dynamic coronary thrombosis leading to infarction and/or sudden death. Autopsy evidence of recurrent mural thrombosis with peripheral embolization culminating in total vascular occlusion. Circulation. 1985 Apr;71(4):699–708. doi: 10.1161/01.cir.71.4.699. [DOI] [PubMed] [Google Scholar]
  14. Fitzgerald D. J., Roy L., Catella F., FitzGerald G. A. Platelet activation in unstable coronary disease. N Engl J Med. 1986 Oct 16;315(16):983–989. doi: 10.1056/NEJM198610163151602. [DOI] [PubMed] [Google Scholar]
  15. Fukuyama M., Sakai K., Itagaki I., Kawano K., Murata M., Kawai Y., Watanabe K., Handa M., Ikeda Y. Continuous measurement of shear-induced platelet aggregation. Thromb Res. 1989 May 1;54(3):253–260. doi: 10.1016/0049-3848(89)90233-8. [DOI] [PubMed] [Google Scholar]
  16. Fuster V., Steele P. M., Chesebro J. H. Role of platelets and thrombosis in coronary atherosclerotic disease and sudden death. J Am Coll Cardiol. 1985 Jun;5(6 Suppl):175B–184B. doi: 10.1016/s0735-1097(85)80552-0. [DOI] [PubMed] [Google Scholar]
  17. Ginsberg M. H., Forsyth J., Lightsey A., Chediak J., Plow E. F. Reduced surface expression and binding of fibronectin by thrombin-stimulated thrombasthenic platelets. J Clin Invest. 1983 Mar;71(3):619–624. doi: 10.1172/JCI110808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gralnick H. R., Williams S. B., Coller B. S. Fibrinogen competes with von Willebrand factor for binding to the glycoprotein IIb/IIIa complex when platelets are stimulated with thrombin. Blood. 1984 Oct;64(4):797–800. [PubMed] [Google Scholar]
  19. Guccione M. A., Packham M. A., Kinlough-Rathbone R. L., Perry D. W., Mustard J. F. Reactions of polylysine with human platelets in plasma and in suspensions of washed platelets. Thromb Haemost. 1976 Nov 30;36(2):360–375. [PubMed] [Google Scholar]
  20. Handa M., Titani K., Holland L. Z., Roberts J. R., Ruggeri Z. M. The von Willebrand factor-binding domain of platelet membrane glycoprotein Ib. Characterization by monoclonal antibodies and partial amino acid sequence analysis of proteolytic fragments. J Biol Chem. 1986 Sep 25;261(27):12579–12585. [PubMed] [Google Scholar]
  21. Ikeda Y., Murata M., Araki Y., Watanabe K., Ando Y., Itagaki I., Mori Y., Ichitani M., Sakai K. Importance of fibrinogen and platelet membrane glycoprotein IIb/IIIa in shear-induced platelet aggregation. Thromb Res. 1988 Jul 15;51(2):157–163. doi: 10.1016/0049-3848(88)90059-x. [DOI] [PubMed] [Google Scholar]
  22. Johnson P. H., Sze P., Winant R., Payne P. W., Lazar J. B. Biochemistry and genetic engineering of hirudin. Semin Thromb Hemost. 1989 Jul;15(3):302–315. doi: 10.1055/s-2007-1002723. [DOI] [PubMed] [Google Scholar]
  23. Kroll M. H., Schafer A. I. Biochemical mechanisms of platelet activation. Blood. 1989 Sep;74(4):1181–1195. [PubMed] [Google Scholar]
  24. Lipowsky H. H., Usami S., Chien S. In vivo measurements of "apparent viscosity" and microvessel hematocrit in the mesentery of the cat. Microvasc Res. 1980 May;19(3):297–319. doi: 10.1016/0026-2862(80)90050-3. [DOI] [PubMed] [Google Scholar]
  25. Marguerie G. A., Plow E. F., Edgington T. S. Human platelets possess an inducible and saturable receptor specific for fibrinogen. J Biol Chem. 1979 Jun 25;254(12):5357–5363. [PubMed] [Google Scholar]
  26. Moake J. L., Turner N. A., Stathopoulos N. A., Nolasco L. H., Hellums J. D. Involvement of large plasma von Willebrand factor (vWF) multimers and unusually large vWF forms derived from endothelial cells in shear stress-induced platelet aggregation. J Clin Invest. 1986 Dec;78(6):1456–1461. doi: 10.1172/JCI112736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Moake J. L., Turner N. A., Stathopoulos N. A., Nolasco L., Hellums J. D. Shear-induced platelet aggregation can be mediated by vWF released from platelets, as well as by exogenous large or unusually large vWF multimers, requires adenosine diphosphate, and is resistant to aspirin. Blood. 1988 May;71(5):1366–1374. [PubMed] [Google Scholar]
  28. Mustard J. F., Kinlough-Rathbone R. L., Packham M. A., Perry D. W., Harfenist E. J., Pai K. R. Comparison of fibrinogen association with normal and thrombasthenic platelets on exposure to ADP or chymotrypsin. Blood. 1979 Nov;54(5):987–993. [PubMed] [Google Scholar]
  29. Nachman R. L., Leung L. L. Complex formation of platelet membrane glycoproteins IIb and IIIa with fibrinogen. J Clin Invest. 1982 Feb;69(2):263–269. doi: 10.1172/JCI110448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Niiya K., Hodson E., Bader R., Byers-Ward V., Koziol J. A., Plow E. F., Ruggeri Z. M. Increased surface expression of the membrane glycoprotein IIb/IIIa complex induced by platelet activation. Relationship to the binding of fibrinogen and platelet aggregation. Blood. 1987 Aug;70(2):475–483. [PubMed] [Google Scholar]
  31. O'Brien J. R., Salmon G. P. Shear stress activation of platelet glycoprotein IIb/IIIa plus von Willebrand factor causes aggregation: filter blockage and the long bleeding time in von Willebrand's disease. Blood. 1987 Nov;70(5):1354–1361. [PubMed] [Google Scholar]
  32. Packham M. A., Mustard J. F. Platelet adhesion. Prog Hemost Thromb. 1984;7:211–288. [PubMed] [Google Scholar]
  33. Peterson D. M., Stathopoulos N. A., Giorgio T. D., Hellums J. D., Moake J. L. Shear-induced platelet aggregation requires von Willebrand factor and platelet membrane glycoproteins Ib and IIb-IIIa. Blood. 1987 Feb;69(2):625–628. [PubMed] [Google Scholar]
  34. Phillips D. R., Charo I. F., Parise L. V., Fitzgerald L. A. The platelet membrane glycoprotein IIb-IIIa complex. Blood. 1988 Apr;71(4):831–843. [PubMed] [Google Scholar]
  35. Piétu G., Cherel G., Marguerie G., Meyer D. Inhibition of von Willebrand factor-platelet interaction by fibrinogen. Nature. 1984 Apr 12;308(5960):648–649. doi: 10.1038/308648a0. [DOI] [PubMed] [Google Scholar]
  36. Ruggeri Z. M., De Marco L., Gatti L., Bader R., Montgomery R. R. Platelets have more than one binding site for von Willebrand factor. J Clin Invest. 1983 Jul;72(1):1–12. doi: 10.1172/JCI110946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schullek J., Jordan J., Montgomery R. R. Interaction of von Willebrand factor with human platelets in the plasma milieu. J Clin Invest. 1984 Feb;73(2):421–428. doi: 10.1172/JCI111228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sixma J. J., Wester J. The hemostatic plug. Semin Hematol. 1977 Jul;14(3):265–299. [PubMed] [Google Scholar]
  39. Thiagarajan P., Kelly K. L. Exposure of binding sites for vitronectin on platelets following stimulation. J Biol Chem. 1988 Feb 25;263(6):3035–3038. [PubMed] [Google Scholar]
  40. Vicente V., Houghten R. A., Ruggeri Z. M. Identification of a site in the alpha chain of platelet glycoprotein Ib that participates in von Willebrand factor binding. J Biol Chem. 1990 Jan 5;265(1):274–280. [PubMed] [Google Scholar]
  41. Vicente V., Kostel P. J., Ruggeri Z. M. Isolation and functional characterization of the von Willebrand factor-binding domain located between residues His1-Arg293 of the alpha-chain of glycoprotein Ib. J Biol Chem. 1988 Dec 5;263(34):18473–18479. [PubMed] [Google Scholar]
  42. Weiss H. J., Hawiger J., Ruggeri Z. M., Turitto V. T., Thiagarajan P., Hoffmann T. Fibrinogen-independent platelet adhesion and thrombus formation on subendothelium mediated by glycoprotein IIb-IIIa complex at high shear rate. J Clin Invest. 1989 Jan;83(1):288–297. doi: 10.1172/JCI113871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Weiss H. J. Platelet physiology and abnormalities of platelet function (second of two parts). N Engl J Med. 1975 Sep 18;293(12):580–588. doi: 10.1056/NEJM197509182931204. [DOI] [PubMed] [Google Scholar]
  44. Weiss H. J., Turitto V. T., Baumgartner H. R. Effect of shear rate on platelet interaction with subendothelium in citrated and native blood. I. Shear rate--dependent decrease of adhesion in von Willebrand's disease and the Bernard-Soulier syndrome. J Lab Clin Med. 1978 Nov;92(5):750–764. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES