Abstract
To determine which parts of the cobalamin (cbl) molecule are required for enzyme activity and which parts, if altered, might inhibit cbl-dependent enzyme activity, we synthesized 16 cbl analogues and administered them to nutritionally normal rats. The cbl analogues, with either modifications of the propionamide side chains of the A-, B-, and C-rings, the acetamide side chain of the B-ring, or the nucleotide moiety, were administered to rats by continuous 14-d subcutaneous infusion. Infusion of cbl-stimulated, cbl-dependent activity. Changes in any part of the cbl molecule always abolished stimulation and, in some cases, caused potent inhibition of both cbl-dependent enzymes. The most inhibitory analogues, OH-cbl[c-lactam], a B-ring analogue, and OH-cbl[e-dimethylamide] and OH-cbl[e-methylamide], two C-ring analogues, decreased mean liver holo-L-methylmalonyl-coenzyme A mutase activity to 65% of control values and increased serum methylmalonic acid concentrations to as high as 3,200% of the control values. Liver methionine synthetase activity was decreased to approximately 20% of the control and mean serum total homocysteine concentrations were increased to 340% of control. A similar level of inhibition was demonstrated in rats who were exposed to 28 d of inhaled nitrous oxide or a prolonged period of dietary cbl deficiency. The inhibitory cbl analogues, nitrous oxide, and diet deficiency all depleted liver cbl. The naturally occurring cbl analogues with modifications of the nucleotide moiety had no effects. We conclude that all parts of the cbl molecule are necessary for in vivo cbl-dependent enzyme activity and that modifications of the side chains of the B and C rings are associated with potent in vivo inhibition of cbl-dependent enzyme activity.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agamanolis D. P., Chester E. M., Victor M., Kark J. A., Hines J. D., Harris J. W. Neuropathology of experimental vitamin B12 deficiency in monkeys. Neurology. 1976 Oct;26(10):905–914. doi: 10.1212/wnl.26.10.905. [DOI] [PubMed] [Google Scholar]
- Allen R. H. Human vitamin B12 transport proteins. Prog Hematol. 1975;9:57–84. [PubMed] [Google Scholar]
- Amess J. A., Burman J. F., Rees G. M., Nancekievill D. G., Mollin D. L. Megaloblastic haemopoiesis in patients receiving nitrous oxide. Lancet. 1978 Aug 12;2(8085):339–342. doi: 10.1016/s0140-6736(78)92941-0. [DOI] [PubMed] [Google Scholar]
- Binder M., Kolhouse J. F., Van Horne K. C., Allen R. H. High-pressure liquid chromatography of cobalamins and cobalamin analogs. Anal Biochem. 1982 Sep 15;125(2):253–258. doi: 10.1016/0003-2697(82)90003-3. [DOI] [PubMed] [Google Scholar]
- Brass E. P., Stabler S. P. Carnitine metabolism in the vitamin B-12-deficient rat. Biochem J. 1988 Oct 1;255(1):153–159. doi: 10.1042/bj2550153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brass E. P., Tahiliani A. G., Allen R. H., Stabler S. P. Coenzyme A metabolism in vitamin B-12-deficient rats. J Nutr. 1990 Mar;120(3):290–297. doi: 10.1093/jn/120.3.290. [DOI] [PubMed] [Google Scholar]
- COATES M. E., DAVIES M. K., HARRISON G. F. Antivitamin B12 activity for the growing chick and developing chick embryo of some analogs of cyanocobalamin. Arch Biochem Biophys. 1960 Mar;87:93–99. doi: 10.1016/0003-9861(60)90128-4. [DOI] [PubMed] [Google Scholar]
- Deacon R., Lumb M., Perry J., Chanarin I., Minty B., Halsey M. J., Nunn J. F. Selective inactivation of vitamin B12 in rats by nitrous oxide. Lancet. 1978 Nov 11;2(8098):1023–1024. doi: 10.1016/s0140-6736(78)92341-3. [DOI] [PubMed] [Google Scholar]
- Gottlieb C. W., Retief F. P., Herbert V. Blockade of vitamin B12-binding sites in gastric juice, serum and saliva by analogues and derivatives of vitamin B12 and by antibody to intrinsic factor. Biochim Biophys Acta. 1967 Aug 29;141(3):560–572. doi: 10.1016/0304-4165(67)90185-7. [DOI] [PubMed] [Google Scholar]
- Hippe E., Olesen H. Nature of vitamin B 12 binding. 3. Thermodynamics of binding to human intrinsic factor and transcobalamins. Biochim Biophys Acta. 1971 Jul 25;243(1):83–88. [PubMed] [Google Scholar]
- Kano Y., Sakamoto S., Sakuraya K., Kubota T., Kasahara T., Hida K., Suda K., Takaku F. Effects of nitrous oxide on human cell lines. Cancer Res. 1983 Apr;43(4):1493–1496. [PubMed] [Google Scholar]
- Kolhouse J. F., Allen R. H. Absorption, plasma transport, and cellular retention of cobalamin analogues in the rabbit. Evidence for the existence of multiple mechanisms that prevent the absorption and tissue dissemination of naturally occurring cobalamin analogues. J Clin Invest. 1977 Dec;60(6):1381–1392. doi: 10.1172/JCI108899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolhouse J. F., Allen R. H. Isolation of cobalamin and cobalamin analogs by reverse affinity chromatography. Anal Biochem. 1978 Feb;84(2):486–490. doi: 10.1016/0003-2697(78)90067-2. [DOI] [PubMed] [Google Scholar]
- Kolhouse J. F., Allen R. H. Recognition of two intracellular cobalamin binding proteins and their identification as methylmalonyl-CoA mutase and methionine synthetase. Proc Natl Acad Sci U S A. 1977 Mar;74(3):921–925. doi: 10.1073/pnas.74.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolhouse J. F., Kondo H., Allen N. C., Podell E., Allen R. H. Cobalamin analogues are present in human plasma and can mask cobalamin deficiency because current radioisotope dilution assays are not specific for true cobalamin. N Engl J Med. 1978 Oct 12;299(15):785–792. doi: 10.1056/NEJM197810122991501. [DOI] [PubMed] [Google Scholar]
- Kolhouse J. F., Stabler S. P., Allen R. H. L-methylmalonyl-CoA mutase from human placenta. Methods Enzymol. 1988;166:407–414. doi: 10.1016/s0076-6879(88)66053-8. [DOI] [PubMed] [Google Scholar]
- Kolhouse J. F., Utley C., Allen R. H. Isolation and characterization of methylmalonyl-CoA mutase from human placenta. J Biol Chem. 1980 Apr 10;255(7):2708–2712. [PubMed] [Google Scholar]
- Kondo H., Binder M. J., Kolhouse J. F., Smythe W. R., Podell E. R., Allen R. H. Presence and formation of cobalamin analogues in multivitamin-mineral pills. J Clin Invest. 1982 Oct;70(4):889–898. doi: 10.1172/JCI110685. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kondo H., Kolhouse J. F., Allen R. H. Presence of cobalamin analogues in animal tissues. Proc Natl Acad Sci U S A. 1980 Feb;77(2):817–821. doi: 10.1073/pnas.77.2.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kondo H., Osborne M. L., Kolhouse J. F., Binder M. J., Podell E. R., Utley C. S., Abrams R. S., Allen R. H. Nitrous oxide has multiple deleterious effects on cobalamin metabolism and causes decreases in activities of both mammalian cobalamin-dependent enzymes in rats. J Clin Invest. 1981 May;67(5):1270–1283. doi: 10.1172/JCI110155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kovachy R. J., Copley S. D., Allen R. H. Recognition, isolation, and characterization of rat liver D-methylmalonyl coenzyme A hydrolase. J Biol Chem. 1983 Sep 25;258(18):11415–11421. [PubMed] [Google Scholar]
- LASSEN H. C., KRISTENSEN H. S. Remission in chronic myeloid leucaemia following prolonged nitrous oxide inhalation. Dan Med Bull. 1959 Nov;6:252–255. [PubMed] [Google Scholar]
- Lindenbaum J., Healton E. B., Savage D. G., Brust J. C., Garrett T. J., Podell E. R., Marcell P. D., Stabler S. P., Allen R. H. Neuropsychiatric disorders caused by cobalamin deficiency in the absence of anemia or macrocytosis. N Engl J Med. 1988 Jun 30;318(26):1720–1728. doi: 10.1056/NEJM198806303182604. [DOI] [PubMed] [Google Scholar]
- Lumb M., Sharer N., Deacon R., Jennings P., Purkiss P., Perry J., Chanarin I. Effects of nitrous oxide-induced inactivation of cobalamin on methionine and S-adenosylmethionine metabolism in the rat. Biochim Biophys Acta. 1983 Apr 20;756(3):354–359. doi: 10.1016/0304-4165(83)90345-8. [DOI] [PubMed] [Google Scholar]
- Marcell P. D., Stabler S. P., Podell E. R., Allen R. H. Quantitation of methylmalonic acid and other dicarboxylic acids in normal serum and urine using capillary gas chromatography-mass spectrometry. Anal Biochem. 1985 Oct;150(1):58–66. doi: 10.1016/0003-2697(85)90440-3. [DOI] [PubMed] [Google Scholar]
- Mudd S. H., Finkelstein J. D., Irreverre F., Laster L. Transsulfuration in mammals. Microassays and tissue distributions of three enzymes of the pathway. J Biol Chem. 1965 Nov;240(11):4382–4392. [PubMed] [Google Scholar]
- PERLAMN D., BARRETT J. B. Biosynthesis of cobalamin analogues by propionibacterium arabinosum. Can J Microbiol. 1958 Feb;4(1):9–15. doi: 10.1139/m58-002. [DOI] [PubMed] [Google Scholar]
- Stabler S. P., Marcell P. D., Allen R. H. Isolation and characterization of DL-methylmalonyl-coenzyme A racemase from rat liver. Arch Biochem Biophys. 1985 Aug 15;241(1):252–264. doi: 10.1016/0003-9861(85)90381-9. [DOI] [PubMed] [Google Scholar]
- Stabler S. P., Marcell P. D., Podell E. R., Allen R. H., Lindenbaum J. Assay of methylmalonic acid in the serum of patients with cobalamin deficiency using capillary gas chromatography-mass spectrometry. J Clin Invest. 1986 May;77(5):1606–1612. doi: 10.1172/JCI112476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stabler S. P., Marcell P. D., Podell E. R., Allen R. H. Quantitation of total homocysteine, total cysteine, and methionine in normal serum and urine using capillary gas chromatography-mass spectrometry. Anal Biochem. 1987 Apr;162(1):185–196. doi: 10.1016/0003-2697(87)90026-1. [DOI] [PubMed] [Google Scholar]
- Stabler S. P., Marcell P. D., Podell E. R., Allen R. H., Savage D. G., Lindenbaum J. Elevation of total homocysteine in the serum of patients with cobalamin or folate deficiency detected by capillary gas chromatography-mass spectrometry. J Clin Invest. 1988 Feb;81(2):466–474. doi: 10.1172/JCI113343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Utley C. S., Marcell P. D., Allen R. H., Antony A. C., Kolhouse J. F. Isolation and characterization of methionine synthetase from human placenta. J Biol Chem. 1985 Nov 5;260(25):13656–13665. [PubMed] [Google Scholar]
- Weir D. G., Keating S., Molloy A., McPartlin J., Kennedy S., Blanchflower J., Kennedy D. G., Rice D., Scott J. M. Methylation deficiency causes vitamin B12-associated neuropathy in the pig. J Neurochem. 1988 Dec;51(6):1949–1952. doi: 10.1111/j.1471-4159.1988.tb01184.x. [DOI] [PubMed] [Google Scholar]
- Williams D. L., Spray G. H. The effects of diets containing raw soya-bean flour on the vitamin B 12 status of rats. Br J Nutr. 1973 Jan;29(1):57–63. doi: 10.1079/bjn19730077. [DOI] [PubMed] [Google Scholar]