Abstract
Previous studies have defined a novel route of internalization for the essential vitamin 5-methyltetrahydrofolate in MA104 cells that begins with binding of the vitamin to the membrane receptor for folate. One of the critical steps in the pathway is the passage of 5-methyltetrahydrofolate through the membrane into the cytoplasm. Utilizing both probenecid and low temperature as selective inhibitors, we have successfully blocked transmembrane movement of the vitamin into the cytoplasm without affecting binding to the receptor or the internalization of the vitamin-receptor complex, which suggests that passage is through an anion carrier. This anion carrier, which mediates inward movement of 5-methyltetrahydrofolate after it dissociates from the receptor, also appears to mediate the efflux of folylmonoglutamate, but not folylpolyglutamate, when the concentration of the former in the cytoplasm is sufficiently high. Since we also found that the synthesis of folylpolyglutamates is regulated in these cells, most likely the intracellular concentration of the vitamin is controlled by regulating the flux of folylmonoglutamate through this carrier.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Antony A. C., Kane M. A., Portillo R. M., Elwood P. C., Kolhouse J. F. Studies of the role of a particulate folate-binding protein in the uptake of 5-methyltetrahydrofolate by cultured human KB cells. J Biol Chem. 1985 Dec 5;260(28):14911–14917. [PubMed] [Google Scholar]
- Antony A. C., Kincade R. S., Verma R. S., Krishnan S. R. Identification of high affinity folate binding proteins in human erythrocyte membranes. J Clin Invest. 1987 Sep;80(3):711–723. doi: 10.1172/JCI113126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Cichowicz D. J., Shane B. Mammalian folylpoly-gamma-glutamate synthetase. 1. Purification and general properties of the hog liver enzyme. Biochemistry. 1987 Jan 27;26(2):504–512. doi: 10.1021/bi00376a024. [DOI] [PubMed] [Google Scholar]
- Cichowicz D. J., Shane B. Mammalian folylpoly-gamma-glutamate synthetase. 2. Substrate specificity and kinetic properties. Biochemistry. 1987 Jan 27;26(2):513–521. doi: 10.1021/bi00376a025. [DOI] [PubMed] [Google Scholar]
- Cook J. D., Cichowicz D. J., George S., Lawler A., Shane B. Mammalian folylpoly-gamma-glutamate synthetase. 4. In vitro and in vivo metabolism of folates and analogues and regulation of folate homeostasis. Biochemistry. 1987 Jan 27;26(2):530–539. doi: 10.1021/bi00376a027. [DOI] [PubMed] [Google Scholar]
- Deutsch J. C., Elwood P. C., Portillo R. M., Macey M. G., Kolhouse J. F. Role of the membrane-associated folate binding protein (folate receptor) in methotrexate transport by human KB cells. Arch Biochem Biophys. 1989 Nov 1;274(2):327–337. doi: 10.1016/0003-9861(89)90446-3. [DOI] [PubMed] [Google Scholar]
- Gewirtz D. A., Plotkin J. H., Randolph J. K. Interaction of probenecid with methotrexate transport and release in the isolated rat hepatocyte in suspension. Cancer Res. 1984 Sep;44(9):3846–3850. [PubMed] [Google Scholar]
- Henderson G. B. Folate-binding proteins. Annu Rev Nutr. 1990;10:319–335. doi: 10.1146/annurev.nu.10.070190.001535. [DOI] [PubMed] [Google Scholar]
- Henderson G. B., Grzelakowska-Sztabert B., Zevely E. M., Huennekens F. M. Binding properties of the 5-methyltetrahydrofolate/methotrexate transport system in L1210 cells. Arch Biochem Biophys. 1980 Jun;202(1):144–149. doi: 10.1016/0003-9861(80)90416-6. [DOI] [PubMed] [Google Scholar]
- Henderson G. B., Suresh M. R., Vitols K. S., Huennekens F. M. Transport of folate compounds in L1210 cells: kinetic evidence that folate influx proceeds via the high-affinity transport system for 5-methyltetrahydrofolate and methotrexate. Cancer Res. 1986 Apr;46(4 Pt 1):1639–1643. [PubMed] [Google Scholar]
- Henderson G. B., Tsuji J. M., Kumar H. P. Mediated uptake of folate by a high-affinity binding protein in sublines of L1210 cells adapted to nanomolar concentrations of folate. J Membr Biol. 1988 Mar;101(3):247–258. doi: 10.1007/BF01872839. [DOI] [PubMed] [Google Scholar]
- Henderson G. B., Zevely E. M. Inhibitory effects of probenecid on the individual transport routes which mediate the influx and efflux of methotrexate in L1210 cells. Biochem Pharmacol. 1985 May 15;34(10):1725–1729. doi: 10.1016/0006-2952(85)90641-0. [DOI] [PubMed] [Google Scholar]
- Horne D. W., Briggs W. T., Wagner C. Enzymatic preparation of high specific activity radiolabeled (I)-L-5-methyltetrahydropteroylglutamate. Anal Biochem. 1977 Dec;83(2):615–621. doi: 10.1016/0003-2697(77)90065-3. [DOI] [PubMed] [Google Scholar]
- Kamen B. A., Capdevila A. Receptor-mediated folate accumulation is regulated by the cellular folate content. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5983–5987. doi: 10.1073/pnas.83.16.5983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamen B. A., Johnson C. A., Wang M. T., Anderson R. G. Regulation of the cytoplasmic accumulation of 5-methyltetrahydrofolate in MA104 cells is independent of folate receptor regulation. J Clin Invest. 1989 Nov;84(5):1379–1386. doi: 10.1172/JCI114310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kamen B. A., Wang M. T., Streckfuss A. J., Peryea X., Anderson R. G. Delivery of folates to the cytoplasm of MA104 cells is mediated by a surface membrane receptor that recycles. J Biol Chem. 1988 Sep 25;263(27):13602–13609. [PubMed] [Google Scholar]
- Kane M. A., Waxman S. Role of folate binding proteins in folate metabolism. Lab Invest. 1989 Jun;60(6):737–746. [PubMed] [Google Scholar]
- Lacey S. W., Sanders J. M., Rothberg K. G., Anderson R. G., Kamen B. A. Complementary DNA for the folate binding protein correctly predicts anchoring to the membrane by glycosyl-phosphatidylinositol. J Clin Invest. 1989 Aug;84(2):715–720. doi: 10.1172/JCI114220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luhrs C. A., Slomiany B. L. A human membrane-associated folate binding protein is anchored by a glycosyl-phosphatidylinositol tail. J Biol Chem. 1989 Dec 25;264(36):21446–21449. [PubMed] [Google Scholar]
- McHugh M., Cheng Y. C. Demonstration of a high affinity folate binder in human cell membranes and its characterization in cultured human KB cells. J Biol Chem. 1979 Nov 25;254(22):11312–11318. [PubMed] [Google Scholar]
- Rothberg K. G., Ying Y. S., Kolhouse J. F., Kamen B. A., Anderson R. G. The glycophospholipid-linked folate receptor internalizes folate without entering the clathrin-coated pit endocytic pathway. J Cell Biol. 1990 Mar;110(3):637–649. doi: 10.1083/jcb.110.3.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shane B. Folylpolyglutamate synthesis and role in the regulation of one-carbon metabolism. Vitam Horm. 1989;45:263–335. doi: 10.1016/s0083-6729(08)60397-0. [DOI] [PubMed] [Google Scholar]
- Sirotnak F. M., Moccio D. M., Young C. W. Increased accumulation of methotrexate by murine tumor cells in vitro in the presence of probenecid which is mediated by a preferential inhibition of efflux. Cancer Res. 1981 Mar;41(3):966–970. [PubMed] [Google Scholar]
- Sirotnak F. M. Obligate genetic expression in tumor cells of a fetal membrane property mediating "folate" transport: biological significance and implications for improved therapy of human cancer. Cancer Res. 1985 Sep;45(9):3992–4000. [PubMed] [Google Scholar]
- Taylor R. T., Hanna M. L. Folate-dependent enzymes in cultured Chinese hamster cells: folypolyglutamate synthetase and its absence in mutants auxotrophic for glycine + adenosine + thymidine. Arch Biochem Biophys. 1977 May;181(1):331–334. doi: 10.1016/0003-9861(77)90512-4. [DOI] [PubMed] [Google Scholar]
- Yang C. H., Sirotnak F. M., Mines L. S. Further studies on a novel class of genetic variants of the L1210 cell with increased folate analogue transport inward. Transport properties of a new variant, evidence for increased levels of a specific transport protein, and its partial characterization following affinity labeling. J Biol Chem. 1988 Jul 15;263(20):9703–9709. [PubMed] [Google Scholar]
- Zettner A., Duly P. E. Principles of competitive binding assays (saturation analyses). II. Sequential saturation. Clin Chem. 1974;20(1):5–14. [PubMed] [Google Scholar]