Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1991 Apr;87(4):1462–1466. doi: 10.1172/JCI115153

CD8+ cell anti-HIV activity correlates with the clinical state of the infected individual.

C E Mackewicz 1, H W Ortega 1, J A Levy 1
PMCID: PMC295198  PMID: 1707063

Abstract

The extent of antiviral activity exhibited in vitro by CD8+lymphocytes from individuals infected by HIV-1 correlates significantly with their clinical status. CD8+ lymphocytes from asymptomatic subjects were found to inhibit HIV-1 replication by 90% or greater at effector/target (E/T) ratios ranging from as low as 0.05 to 0.25. CD8+ cells from 17 of 19 (89%) of these subjects suppressed replication at an E/T ratio of 0.10 or less. CD8+ lymphocytes from symptomatic patients (non-AIDS) inhibited HIV-1 replication at E/T ratios ranging from 0.05 to 1.0, and CD8+ cells from 8 of 13 (62%) required ratios greater than 0.10. As a group, patients with AIDS exhibited the lowest degree of anti-HIV activity with their CD8+ lymphocytes. The effective range of E/T ratios from AIDS patients was 0.10-2.0, and 9 of 10 (90%) required E/T ratios greater than 0.25. This anti-HIV activity exhibited by CD8+ cells also correlated significantly with the subject's peripheral blood CD4+ cell count. The relative extent of CD8+ cell anti-HIV-1 activity was not found dependent on variations in the CD4+ target cells and viruses used. These findings suggest that the decreased CD8+ cell antiviral activity is related to progression to disease in HIV-infected individuals.

Full text

PDF
1462

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonavida B., Katz J., Gottlieb M. Mechanism of defective NK cell activity in patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. I. Defective trigger on NK cells for NKCF production by target cells, and partial restoration by IL 2. J Immunol. 1986 Aug 15;137(4):1157–1163. [PubMed] [Google Scholar]
  2. Brinchmann J. E., Gaudernack G., Vartdal F. CD8+ T cells inhibit HIV replication in naturally infected CD4+ T cells. Evidence for a soluble inhibitor. J Immunol. 1990 Apr 15;144(8):2961–2966. [PubMed] [Google Scholar]
  3. Cheng-Mayer C., Seto D., Tateno M., Levy J. A. Biologic features of HIV-1 that correlate with virulence in the host. Science. 1988 Apr 1;240(4848):80–82. doi: 10.1126/science.2832945. [DOI] [PubMed] [Google Scholar]
  4. Creemers P. C., Stark D. F., Boyko W. J. Evaluation of natural killer cell activity in patients with persistent generalized lymphadenopathy and acquired immunodeficiency syndrome. Clin Immunol Immunopathol. 1985 Aug;36(2):141–150. doi: 10.1016/0090-1229(85)90115-1. [DOI] [PubMed] [Google Scholar]
  5. Engers H. D., Lahaye T., Sorenson G. D., Glasebrook A. L., Horvath C., Brunner K. T. Functional activity in vivo of effector T cell populations. II. Anti-tumor activity exhibited by syngeneic anti-MoMULV-specific cytolytic T cell clones. J Immunol. 1984 Sep;133(3):1664–1670. [PubMed] [Google Scholar]
  6. Evans L. A., Thomson-Honnebier G., Steimer K., Paoletti E., Perkus M. E., Hollander H., Levy J. A. Antibody-dependent cellular cytotoxicity is directed against both the gp120 and gp41 envelope proteins of HIV. AIDS. 1989 May;3(5):273–276. doi: 10.1097/00002030-198905000-00004. [DOI] [PubMed] [Google Scholar]
  7. Giorgi J. V., Detels R. T-cell subset alterations in HIV-infected homosexual men: NIAID Multicenter AIDS cohort study. Clin Immunol Immunopathol. 1989 Jul;52(1):10–18. doi: 10.1016/0090-1229(89)90188-8. [DOI] [PubMed] [Google Scholar]
  8. Gluckman J. C., Klatzmann D., Cavaille-Coll M., Brisson E., Messiah A., Lachiver D., Rozenbaum W. Is there correlation of T cell proliferative functions and surface marker phenotypes in patients with acquired immune deficiency syndrome or lymphadenopathy syndrome? Clin Exp Immunol. 1985 Apr;60(1):8–16. [PMC free article] [PubMed] [Google Scholar]
  9. Guillon J. M., Autran B., Denis M., Fouret P., Plata F., Mayaud C. M., Akoun G. M. Human immunodeficiency virus-related lymphocytic alveolitis. Chest. 1988 Dec;94(6):1264–1270. doi: 10.1378/chest.94.6.1264. [DOI] [PubMed] [Google Scholar]
  10. Gurley R. J., Ikeuchi K., Byrn R. A., Anderson K., Groopman J. E. CD4+ lymphocyte function with early human immunodeficiency virus infection. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1993–1997. doi: 10.1073/pnas.86.6.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ho D. D., Moudgil T., Alam M. Quantitation of human immunodeficiency virus type 1 in the blood of infected persons. N Engl J Med. 1989 Dec 14;321(24):1621–1625. doi: 10.1056/NEJM198912143212401. [DOI] [PubMed] [Google Scholar]
  12. Hoffenbach A., Langlade-Demoyen P., Dadaglio G., Vilmer E., Michel F., Mayaud C., Autran B., Plata F. Unusually high frequencies of HIV-specific cytotoxic T lymphocytes in humans. J Immunol. 1989 Jan 15;142(2):452–462. [PubMed] [Google Scholar]
  13. Hoffman A. D., Banapour B., Levy J. A. Characterization of the AIDS-associated retrovirus reverse transcriptase and optimal conditions for its detection in virions. Virology. 1985 Dec;147(2):326–335. doi: 10.1016/0042-6822(85)90135-7. [DOI] [PubMed] [Google Scholar]
  14. Kaminsky L. S., McHugh T., Stites D., Volberding P., Henle G., Henle W., Levy J. A. High prevalence of antibodies to acquired immune deficiency syndrome (AIDS)-associated retrovirus (ARV) in AIDS and related conditions but not in other disease states. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5535–5539. doi: 10.1073/pnas.82.16.5535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kannagi M., Chalifoux L. V., Lord C. I., Letvin N. L. Suppression of simian immunodeficiency virus replication in vitro by CD8+ lymphocytes. J Immunol. 1988 Apr 1;140(7):2237–2242. [PubMed] [Google Scholar]
  16. Lang W., Perkins H., Anderson R. E., Royce R., Jewell N., Winkelstein W., Jr Patterns of T lymphocyte changes with human immunodeficiency virus infection: from seroconversion to the development of AIDS. J Acquir Immune Defic Syndr. 1989;2(1):63–69. [PubMed] [Google Scholar]
  17. Leclerc J. C., Cantor H. T cell-mediated immunity to oncornavirus-induced tumors. II. Ability of different T cell sets to prevent tumor growth in vivo. J Immunol. 1980 Feb;124(2):851–854. [PubMed] [Google Scholar]
  18. Levy J. A., Shimabukuro J. Recovery of AIDS-associated retroviruses from patients with AIDS or AIDS-related conditions and from clinically healthy individuals. J Infect Dis. 1985 Oct;152(4):734–738. doi: 10.1093/infdis/152.4.734. [DOI] [PubMed] [Google Scholar]
  19. Levy J. A., Tobler L. H., McHugh T. M., Casavant C. H., Stites D. P. Long-term cultivation of T-cell subsets from patients with acquired immune deficiency syndrome. Clin Immunol Immunopathol. 1985 Jun;35(3):328–336. doi: 10.1016/0090-1229(85)90093-5. [DOI] [PubMed] [Google Scholar]
  20. McMichael A. J., Gotch F. M., Noble G. R., Beare P. A. Cytotoxic T-cell immunity to influenza. N Engl J Med. 1983 Jul 7;309(1):13–17. doi: 10.1056/NEJM198307073090103. [DOI] [PubMed] [Google Scholar]
  21. Nixon D. F., Townsend A. R., Elvin J. G., Rizza C. R., Gallwey J., McMichael A. J. HIV-1 gag-specific cytotoxic T lymphocytes defined with recombinant vaccinia virus and synthetic peptides. Nature. 1988 Dec 1;336(6198):484–487. doi: 10.1038/336484a0. [DOI] [PubMed] [Google Scholar]
  22. Ojo-Amaize E. A., Nishanian P., Keith D. E., Jr, Houghton R. L., Heitjan D. F., Fahey J. L., Giorgi J. V. Antibodies to human immunodeficiency virus in human sera induce cell-mediated lysis of human immunodeficiency virus-infected cells. J Immunol. 1987 Oct 1;139(7):2458–2463. [PubMed] [Google Scholar]
  23. Plata F., Autran B., Martins L. P., Wain-Hobson S., Raphaël M., Mayaud C., Denis M., Guillon J. M., Debré P. AIDS virus-specific cytotoxic T lymphocytes in lung disorders. Nature. 1987 Jul 23;328(6128):348–351. doi: 10.1038/328348a0. [DOI] [PubMed] [Google Scholar]
  24. Quinnan G. V., Jr, Kirmani N., Rook A. H., Manischewitz J. F., Jackson L., Moreschi G., Santos G. W., Saral R., Burns W. H. Cytotoxic t cells in cytomegalovirus infection: HLA-restricted T-lymphocyte and non-T-lymphocyte cytotoxic responses correlate with recovery from cytomegalovirus infection in bone-marrow-transplant recipients. N Engl J Med. 1982 Jul 1;307(1):7–13. doi: 10.1056/NEJM198207013070102. [DOI] [PubMed] [Google Scholar]
  25. Rosenberg Z. F., Fauci A. S. The immunopathogenesis of HIV infection. Adv Immunol. 1989;47:377–431. doi: 10.1016/s0065-2776(08)60665-3. [DOI] [PubMed] [Google Scholar]
  26. Shepp D. H., Chakrabarti S., Moss B., Quinnan G. V., Jr Antibody-dependent cellular cytotoxicity specific for the envelope antigens of human immunodeficiency virus. J Infect Dis. 1988 Jun;157(6):1260–1264. doi: 10.1093/infdis/157.6.1260. [DOI] [PubMed] [Google Scholar]
  27. Walker B. D., Chakrabarti S., Moss B., Paradis T. J., Flynn T., Durno A. G., Blumberg R. S., Kaplan J. C., Hirsch M. S., Schooley R. T. HIV-specific cytotoxic T lymphocytes in seropositive individuals. Nature. 1987 Jul 23;328(6128):345–348. doi: 10.1038/328345a0. [DOI] [PubMed] [Google Scholar]
  28. Walker C. M., Levy J. A. A diffusible lymphokine produced by CD8+ T lymphocytes suppresses HIV replication. Immunology. 1989 Apr;66(4):628–630. [PMC free article] [PubMed] [Google Scholar]
  29. Walker C. M., Moody D. J., Stites D. P., Levy J. A. CD8+ T lymphocyte control of HIV replication in cultured CD4+ cells varies among infected individuals. Cell Immunol. 1989 Apr 1;119(2):470–475. doi: 10.1016/0008-8749(89)90259-1. [DOI] [PubMed] [Google Scholar]
  30. Walker C. M., Moody D. J., Stites D. P., Levy J. A. CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication. Science. 1986 Dec 19;234(4783):1563–1566. doi: 10.1126/science.2431484. [DOI] [PubMed] [Google Scholar]
  31. Wiviott L. D., Walker C. M., Levy J. A. CD8+ lymphocytes suppress HIV production by autologous CD4+ cells without eliminating the infected cells from culture. Cell Immunol. 1990 Jul;128(2):628–634. doi: 10.1016/0008-8749(90)90054-u. [DOI] [PubMed] [Google Scholar]
  32. Yap K. L., Ada G. L., McKenzie I. F. Transfer of specific cytotoxic T lymphocytes protects mice inoculated with influenza virus. Nature. 1978 May 18;273(5659):238–239. doi: 10.1038/273238a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES