Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1991 May;87(5):1553–1558. doi: 10.1172/JCI115168

Regulation of Cl-/HCO3- exchange in the rabbit cortical collecting tubule.

I D Weiner 1, L L Hamm 1
PMCID: PMC295237  PMID: 2022727

Abstract

Cl-/HCO3- exchange is present in all three cell types of the rabbit cortical collecting tubule, yet may mediate a different function in each cell type. The purpose of this study was to characterize further the location, function, and regulation of Cl-/HCO3- exchange in two cell types using measurements of intracellular pH (pHi). In the principal cell there was no evidence for apical Cl-/HCO3- exchange, including no change in pHi with increases in luminal HCO3-. The principal cell possesses a basolateral Cl-/HCO3- exchanger that is inactive normally but stimulated by intracellular alkalosis. Decreased PCO2 results in increased pHi associated with activation of Cl-/HCO3- exchange and partial recovery of pHi. In contrast, the beta-intercalated cell possesses an apical Cl-/HCO3- exchanger and alkalinizes with increases in luminal HCO3-. Also in contrast to the principal cell, the beta-intercalated cell apical Cl-/HCO3- exchanger does not appear to be involved in pHi regulation and may be specifically modified for transcellular HCO3- transport. In conclusion, the separate Cl-/HCO3- exchangers in the principal cell and the beta-intercalated cell not only have opposite polarity but are regulated differently.

Full text

PDF
1553

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alper S. L., Natale J., Gluck S., Lodish H. F., Brown D. Subtypes of intercalated cells in rat kidney collecting duct defined by antibodies against erythroid band 3 and renal vacuolar H+-ATPase. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5429–5433. doi: 10.1073/pnas.86.14.5429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alpern R. J. Mechanism of basolateral membrane H+/OH-/HCO-3 transport in the rat proximal convoluted tubule. A sodium-coupled electrogenic process. J Gen Physiol. 1985 Nov;86(5):613–636. doi: 10.1085/jgp.86.5.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boron W. F., Boulpaep E. L. Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO3- transport. J Gen Physiol. 1983 Jan;81(1):53–94. doi: 10.1085/jgp.81.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boron W. F., Boulpaep E. L. The electrogenic Na/HCO3 cotransporter. Kidney Int. 1989 Sep;36(3):392–402. doi: 10.1038/ki.1989.208. [DOI] [PubMed] [Google Scholar]
  5. Boyarsky G., Ganz M. B., Sterzel R. B., Boron W. F. pH regulation in single glomerular mesangial cells. II. Na+-dependent and -independent Cl(-)-HCO3- exchangers. Am J Physiol. 1988 Dec;255(6 Pt 1):C857–C869. doi: 10.1152/ajpcell.1988.255.6.C857. [DOI] [PubMed] [Google Scholar]
  6. Breyer M. D., Kokko J. P., Jacobson H. R. Regulation of net bicarbonate transport in rabbit cortical collecting tubule by peritubular pH, carbon dioxide tension, and bicarbonate concentration. J Clin Invest. 1986 May;77(5):1650–1660. doi: 10.1172/JCI112482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown D., Hirsch S., Gluck S. Localization of a proton-pumping ATPase in rat kidney. J Clin Invest. 1988 Dec;82(6):2114–2126. doi: 10.1172/JCI113833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burg M., Grantham J., Abramow M., Orloff J. Preparation and study of fragments of single rabbit nephrons. Am J Physiol. 1966 Jun;210(6):1293–1298. doi: 10.1152/ajplegacy.1966.210.6.1293. [DOI] [PubMed] [Google Scholar]
  9. Chaillet J. R., Lopes A. G., Boron W. F. Basolateral Na-H exchange in the rabbit cortical collecting tubule. J Gen Physiol. 1985 Dec;86(6):795–812. doi: 10.1085/jgp.86.6.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Garcia-Austt J., Good D. W., Burg M. B., Knepper M. A. Deoxycorticosterone-stimulated bicarbonate secretion in rabbit cortical collecting ducts: effects of luminal chloride removal and in vivo acid loading. Am J Physiol. 1985 Aug;249(2 Pt 2):F205–F212. doi: 10.1152/ajprenal.1985.249.2.F205. [DOI] [PubMed] [Google Scholar]
  11. Grassl S. M., Aronson P. S. Na+/HCO3-co-transport in basolateral membrane vesicles isolated from rabbit renal cortex. J Biol Chem. 1986 Jul 5;261(19):8778–8783. [PubMed] [Google Scholar]
  12. Grinstein S., Rothstein A. Mechanisms of regulation of the Na+/H+ exchanger. J Membr Biol. 1986;90(1):1–12. doi: 10.1007/BF01869680. [DOI] [PubMed] [Google Scholar]
  13. Hamm L. L., Hering-Smith K. S., Vehaskari V. M. Control of bicarbonate transport in collecting tubules from normal and remnant kidneys. Am J Physiol. 1989 Apr;256(4 Pt 2):F680–F687. doi: 10.1152/ajprenal.1989.256.4.F680. [DOI] [PubMed] [Google Scholar]
  14. Howlin K. J., Alpern R. J., Rector F. C., Jr Amiloride inhibition of proximal tubular acidification. Am J Physiol. 1985 Jun;248(6 Pt 2):F773–F778. doi: 10.1152/ajprenal.1985.248.6.F773. [DOI] [PubMed] [Google Scholar]
  15. Kurtz I., Golchini K. Na+-independent Cl(-)-HCO-3- exchange in Madin-Darby canine kidney cells. Role in intracellular pH regulation. J Biol Chem. 1987 Apr 5;262(10):4516–4520. [PubMed] [Google Scholar]
  16. Matsuzaki K., Schuster V. L., Stokes J. B. Reduction in sensitivity to Cl- channel blockers by HCO3- -CO2 in rabbit cortical collecting duct. Am J Physiol. 1989 Jul;257(1 Pt 1):C102–C109. doi: 10.1152/ajpcell.1989.257.1.C102. [DOI] [PubMed] [Google Scholar]
  17. Matsuzaki K., Stokes J. B., Schuster V. L. Stimulation of Cl- self exchange by intracellular HCO3- in rabbit cortical collecting duct. Am J Physiol. 1989 Jul;257(1 Pt 1):C94–101. doi: 10.1152/ajpcell.1989.257.1.C94. [DOI] [PubMed] [Google Scholar]
  18. McKinney T. D., Burg M. B. Bicarbonate absorption by rabbit cortical collecting tubules in vitro. Am J Physiol. 1978 Feb;234(2):F141–F145. doi: 10.1152/ajprenal.1978.234.2.F141. [DOI] [PubMed] [Google Scholar]
  19. McKinney T. D., Burg M. B. Bicarbonate secretion by rabbit cortical collecting tubules in vitro. J Clin Invest. 1978 Jun;61(6):1421–1427. doi: 10.1172/JCI109061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McKinney T. D., Davidson K. K. Effects of respiratory acidosis on HCO3- transport by rabbit collecting tubules. Am J Physiol. 1988 Oct;255(4 Pt 2):F656–F665. doi: 10.1152/ajprenal.1988.255.4.F656. [DOI] [PubMed] [Google Scholar]
  21. Muto S., Giebisch G., Sansom S. Effects of adrenalectomy on CCD: evidence for differential response of two cell types. Am J Physiol. 1987 Oct;253(4 Pt 2):F742–F752. doi: 10.1152/ajprenal.1987.253.4.F742. [DOI] [PubMed] [Google Scholar]
  22. O'Neil R. G., Hayhurst R. A. Functional differentiation of cell types of cortical collecting duct. Am J Physiol. 1985 Mar;248(3 Pt 2):F449–F453. doi: 10.1152/ajprenal.1985.248.3.F449. [DOI] [PubMed] [Google Scholar]
  23. Reinertsen K. V., Tønnessen T. I., Jacobsen J., Sandvig K., Olsnes S. Role of chloride/bicarbonate antiport in the control of cytosolic pH. Cell-line differences in activity and regulation of antiport. J Biol Chem. 1988 Aug 15;263(23):11117–11125. [PubMed] [Google Scholar]
  24. Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
  25. Satlin L. M., Schwartz G. J. Cellular remodeling of HCO3(-)-secreting cells in rabbit renal collecting duct in response to an acidic environment. J Cell Biol. 1989 Sep;109(3):1279–1288. doi: 10.1083/jcb.109.3.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schuster V. L., Bonsib S. M., Jennings M. L. Two types of collecting duct mitochondria-rich (intercalated) cells: lectin and band 3 cytochemistry. Am J Physiol. 1986 Sep;251(3 Pt 1):C347–C355. doi: 10.1152/ajpcell.1986.251.3.C347. [DOI] [PubMed] [Google Scholar]
  27. Schuster V. L. Cyclic adenosine monophosphate-stimulated anion transport in rabbit cortical collecting duct. Kinetics, stoichiometry, and conductive pathways. J Clin Invest. 1986 Dec;78(6):1621–1630. doi: 10.1172/JCI112755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schuster V. L. Cyclic adenosine monophosphate-stimulated bicarbonate secretion in rabbit cortical collecting tubules. J Clin Invest. 1985 Jun;75(6):2056–2064. doi: 10.1172/JCI111925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schuster V. L. Physiology and cell biology update: control mechanisms for bicarbonate secretion. Am J Kidney Dis. 1989 Apr;13(4):348–352. doi: 10.1016/s0272-6386(89)80045-9. [DOI] [PubMed] [Google Scholar]
  30. Schuster V. L., Stokes J. B. Chloride transport by the cortical and outer medullary collecting duct. Am J Physiol. 1987 Aug;253(2 Pt 2):F203–F212. doi: 10.1152/ajprenal.1987.253.2.F203. [DOI] [PubMed] [Google Scholar]
  31. Schwartz G. J., Barasch J., Al-Awqati Q. Plasticity of functional epithelial polarity. 1985 Nov 28-Dec 4Nature. 318(6044):368–371. doi: 10.1038/318368a0. [DOI] [PubMed] [Google Scholar]
  32. Soleimani M., Aronson P. S. Ionic mechanism of Na+-HCO3- cotransport in rabbit renal basolateral membrane vesicles. J Biol Chem. 1989 Nov 5;264(31):18302–18308. [PubMed] [Google Scholar]
  33. Star R. A., Burg M. B., Knepper M. A. Bicarbonate secretion and chloride absorption by rabbit cortical collecting ducts. Role of chloride/bicarbonate exchange. J Clin Invest. 1985 Sep;76(3):1123–1130. doi: 10.1172/JCI112067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Strange K. Ouabain-induced cell swelling in rabbit cortical collecting tubule: NaCl transport by principal cells. J Membr Biol. 1989 Mar;107(3):249–261. doi: 10.1007/BF01871940. [DOI] [PubMed] [Google Scholar]
  35. Tago K., Schuster V. L., Stokes J. B. Regulation of chloride self exchange by cAMP in cortical collecting tubule. Am J Physiol. 1986 Jul;251(1 Pt 2):F40–F48. doi: 10.1152/ajprenal.1986.251.1.F40. [DOI] [PubMed] [Google Scholar]
  36. Tago K., Schuster V. L., Stokes J. B. Stimulation of chloride transport by HCO3-CO2 in rabbit cortical collecting tubule. Am J Physiol. 1986 Jul;251(1 Pt 2):F49–F56. doi: 10.1152/ajprenal.1986.251.1.F49. [DOI] [PubMed] [Google Scholar]
  37. Thomas J. A., Buchsbaum R. N., Zimniak A., Racker E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry. 1979 May 29;18(11):2210–2218. doi: 10.1021/bi00578a012. [DOI] [PubMed] [Google Scholar]
  38. Verlander J. W., Madsen K. M., Low P. S., Allen D. P., Tisher C. C. Immunocytochemical localization of band 3 protein in the rat collecting duct. Am J Physiol. 1988 Jul;255(1 Pt 2):F115–F125. doi: 10.1152/ajprenal.1988.255.1.F115. [DOI] [PubMed] [Google Scholar]
  39. Wang X., Kurtz I. H+/base transport in principal cells characterized by confocal fluorescence imaging. Am J Physiol. 1990 Aug;259(2 Pt 1):C365–C373. doi: 10.1152/ajpcell.1990.259.2.C365. [DOI] [PubMed] [Google Scholar]
  40. Weiner I. D., Hamm L. L. Regulation of intracellular pH in the rabbit cortical collecting tubule. J Clin Invest. 1990 Jan;85(1):274–281. doi: 10.1172/JCI114423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Weiner I. D., Hamm L. L. Use of fluorescent dye BCECF to measure intracellular pH in cortical collecting tubule. Am J Physiol. 1989 May;256(5 Pt 2):F957–F964. doi: 10.1152/ajprenal.1989.256.5.F957. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES