Abstract
The effects of thyroid-stimulating antibodies (TSAb) and of thyrotropin (TSH) were compared, on the generation of cyclic AMP and inositol phosphates (InsP), in human thyroid slices incubated in vitro, and on the Rapoport cyclic AMP bioassay. The TSAb positive sera were obtained from 19 patients with Graves' disease. In 14 experiments with the slices system, TSH significantly increased cyclic AMP accumulation (TSH, 0.03-10 mU/ml) as well as the cyclic AMP-independent inositol trisphosphate (InsP3) generation (TSH, 1-10 mU/ml). In the same 14 experiments, TSAb (0.10-28 mg/ml) enhanced cyclic AMP intracellular levels as expected while they did not induce any InsP accumulation. Even when TSAb increased cyclic AMP levels to the same or higher values as those obtained with TSH concentrations allowing InsP3 generation. TSAb were still unable to activate the phosphatidylinositol-Ca2+ cascade. The patterns of the response curves of TSAb and TSH on cyclic AMP accumulation were different, suggesting that different mechanisms may be involved. In addition, unlike TSH, TSAb were not able to stimulate H2O2 generation, which in human tissue mainly depends on the activation of the phosphatidylinositol-Ca2+ cascade. Immunoglobulins from six additional Graves' patients lacking measurable cyclic AMP-stimulating activity in both slices and cells systems did not activate phospholipase C either. In conclusion, our results show that TSAb do not share all the metabolic actions of TSH on human thyroid tissue. The data provide support for the concept that the pathogenesis of Graves' disease can be fully accounted for by the ability of TSAb to stimulate adenylate cyclase. This work also confirms that TSH activates the cyclic AMP and the phosphatidylinositol cascade by independent pathways in the human thyroid.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashkenazi A., Winslow J. W., Peralta E. G., Peterson G. L., Schimerlik M. I., Capon D. J., Ramachandran J. An M2 muscarinic receptor subtype coupled to both adenylyl cyclase and phosphoinositide turnover. Science. 1987 Oct 30;238(4827):672–675. doi: 10.1126/science.2823384. [DOI] [PubMed] [Google Scholar]
- Berridge M. J., Irvine R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984 Nov 22;312(5992):315–321. doi: 10.1038/312315a0. [DOI] [PubMed] [Google Scholar]
- Bone E. A., Alling D. W., Grollman E. F. Norepinephrine and thyroid-stimulating hormone induce inositol phosphate accumulation in FRTL-5 cells. Endocrinology. 1986 Nov;119(5):2193–2200. doi: 10.1210/endo-119-5-2193. [DOI] [PubMed] [Google Scholar]
- Bottazzo G. F., Todd I., Mirakian R., Belfiore A., Pujol-Borrell R. Organ-specific autoimmunity: a 1986 overview. Immunol Rev. 1986 Dec;94:137–169. doi: 10.1111/j.1600-065X.1986.tb01168.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burman K. D., Baker J. R., Jr Immune mechanisms in Graves' disease. Endocr Rev. 1985 Spring;6(2):183–232. doi: 10.1210/edrv-6-2-183. [DOI] [PubMed] [Google Scholar]
- Bénard B., Brault J. Production de peroxyde dans la thyroïde. Union Med Can. 1971 Apr;100(4):701–705. [PubMed] [Google Scholar]
- Corvilain B., Van Sande J., Dumont J. E. Inhibition by iodide of iodide binding to proteins: the "Wolff-Chaikoff" effect is caused by inhibition of H2O2 generation. Biochem Biophys Res Commun. 1988 Aug 15;154(3):1287–1292. doi: 10.1016/0006-291x(88)90279-3. [DOI] [PubMed] [Google Scholar]
- Creba J. A., Downes C. P., Hawkins P. T., Brewster G., Michell R. H., Kirk C. J. Rapid breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in rat hepatocytes stimulated by vasopressin and other Ca2+-mobilizing hormones. Biochem J. 1983 Jun 15;212(3):733–747. doi: 10.1042/bj2120733. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daum P. R., Downes C. P., Young J. M. Histamine stimulation of inositol 1-phosphate accumulation in lithium-treated slices from regions of guinea pig brain. J Neurochem. 1984 Jul;43(1):25–32. doi: 10.1111/j.1471-4159.1984.tb06674.x. [DOI] [PubMed] [Google Scholar]
- Davis J. S., Weakland L. L., Farese R. V., West L. A. Luteinizing hormone increases inositol trisphosphate and cytosolic free Ca2+ in isolated bovine luteal cells. J Biol Chem. 1987 Jun 25;262(18):8515–8521. [PubMed] [Google Scholar]
- Decoster C., Mockel J., Van Sande J., Unger J., Dumont J. E. The role of calcium and guanosine 3':5'-monophosphate in the action of acetylcholine on thyroid metabolism. Eur J Biochem. 1980 Feb;104(1):199–208. doi: 10.1111/j.1432-1033.1980.tb04416.x. [DOI] [PubMed] [Google Scholar]
- Dumont J. E., Roger P. P., Ludgate M. Assays for thyroid growth immunoglobulins and their clinical implications: methods, concepts, and misconceptions. Endocr Rev. 1987 Nov;8(4):448–452. doi: 10.1210/edrv-8-4-448. [DOI] [PubMed] [Google Scholar]
- Enjalbert A., Sladeczek F., Guillon G., Bertrand P., Shu C., Epelbaum J., Garcia-Sainz A., Jard S., Lombard C., Kordon C. Angiotensin II and dopamine modulate both cAMP and inositol phosphate productions in anterior pituitary cells. Involvement in prolactin secretion. J Biol Chem. 1986 Mar 25;261(9):4071–4075. [PubMed] [Google Scholar]
- Graff I., Mockel J., Laurent E., Erneux C., Dumont J. E. Carbachol and sodium fluoride, but not TSH, stimulate the generation of inositol phosphates in the dog thyroid. FEBS Lett. 1987 Jan 5;210(2):204–210. doi: 10.1016/0014-5793(87)81338-8. [DOI] [PubMed] [Google Scholar]
- Guillon G., Butlen D., Rajerison R. Evidence for two molecular forms of solubilized vasopressin receptors in rat kidney membranes. Regulation by guanyl nucleotides. Mol Pharmacol. 1984 Sep;26(2):241–247. [PubMed] [Google Scholar]
- Jin S., Hornicek F. J., Neylan D., Zakarija M., McKenzie J. M. Evidence that adenosine 3',5'-monophosphate mediates stimulation of thyroid growth in FRTL5 cells. Endocrinology. 1986 Aug;119(2):802–810. doi: 10.1210/endo-119-2-802. [DOI] [PubMed] [Google Scholar]
- Laurent E., Mockel J., Van Sande J., Graff I., Dumont J. E. Dual activation by thyrotropin of the phospholipase C and cyclic AMP cascades in human thyroid. Mol Cell Endocrinol. 1987 Aug;52(3):273–278. doi: 10.1016/0303-7207(87)90055-4. [DOI] [PubMed] [Google Scholar]
- Libert F., Lefort A., Gerard C., Parmentier M., Perret J., Ludgate M., Dumont J. E., Vassart G. Cloning, sequencing and expression of the human thyrotropin (TSH) receptor: evidence for binding of autoantibodies. Biochem Biophys Res Commun. 1989 Dec 29;165(3):1250–1255. doi: 10.1016/0006-291x(89)92736-8. [DOI] [PubMed] [Google Scholar]
- Mockel J., Van Sande J., Decoster C., Dumont J. E. Tumor promoters as probes of protein kinase C in dog thyroid cell: inhibition of the primary effects of carbamylocholine and reproduction of some distal effects. Metabolism. 1987 Feb;36(2):137–143. doi: 10.1016/0026-0495(87)90007-2. [DOI] [PubMed] [Google Scholar]
- Nagayama Y., Kaufman K. D., Seto P., Rapoport B. Molecular cloning, sequence and functional expression of the cDNA for the human thyrotropin receptor. Biochem Biophys Res Commun. 1989 Dec 29;165(3):1184–1190. doi: 10.1016/0006-291x(89)92727-7. [DOI] [PubMed] [Google Scholar]
- Noh J., Hamada N., Saito H., Oyanagi H., Ishikawa N., Momotani N., Ito K., Morii H. Evidence against the importance in the disease process of antibodies to bovine thyroid-stimulating hormone found in some patients with Graves' disease. J Clin Endocrinol Metab. 1989 Jan;68(1):107–113. doi: 10.1210/jcem-68-1-107. [DOI] [PubMed] [Google Scholar]
- Rapoport B., Filetti S., Takai N., Seto P., Halverson G. Studies on the cyclic AMP response to thyroid stimulating immunoglobulin (TSI) and thyrotropin (TSH) in human thyroid cell monolayers. Metabolism. 1982 Nov;31(11):1159–1167. doi: 10.1016/0026-0495(82)90168-8. [DOI] [PubMed] [Google Scholar]
- Rees Smith B., McLachlan S. M., Furmaniak J. Autoantibodies to the thyrotropin receptor. Endocr Rev. 1988 Feb;9(1):106–121. doi: 10.1210/edrv-9-1-106. [DOI] [PubMed] [Google Scholar]
- Roger P. P., Dumont J. E. Factors controlling proliferation and differentiation of canine thyroid cells cultured in reduced serum conditions: effects of thyrotropin, cyclic AMP and growth factors. Mol Cell Endocrinol. 1984 Jun;36(1-2):79–93. doi: 10.1016/0303-7207(84)90087-x. [DOI] [PubMed] [Google Scholar]
- Roger P. P., Hotimsky A., Moreau C., Dumont J. E. Stimulation by thyrotropin, cholera toxin and dibutyryl cyclic AMP of the multiplication of differentiated thyroid cells in vitro. Mol Cell Endocrinol. 1982 Apr;26(1-2):165–176. doi: 10.1016/0303-7207(82)90014-4. [DOI] [PubMed] [Google Scholar]
- Roger P. P., Van Heuverswyn B., Lambert C., Reuse S., Vassart G., Dumont J. E. Antagonistic effects of thyrotropin and epidermal growth factor on thyroglobulin mRNA level in cultured thyroid cells. Eur J Biochem. 1985 Oct 15;152(2):239–245. doi: 10.1111/j.1432-1033.1985.tb09189.x. [DOI] [PubMed] [Google Scholar]
- Valente W. A., Vitti P., Kohn L. D., Brandi M. L., Rotella C. M., Toccafondi R., Tramontano D., Aloj S. M., Ambesi-Impiombato F. S. The relationship of growth and adenylate cyclase activity in cultured thyroid cells: separate bioeffects of thyrotropin. Endocrinology. 1983 Jan;112(1):71–79. doi: 10.1210/endo-112-1-71. [DOI] [PubMed] [Google Scholar]
- Valente W. A., Vitti P., Rotella C. M., Vaughan M. M., Aloj S. M., Grollman E. F., Ambesi-Impiombato F. S., Kohn L. D. Antibodies that promote thyroid growth. A distinct population of thyroid-stimulating autoantibodies. N Engl J Med. 1983 Oct 27;309(17):1028–1034. doi: 10.1056/NEJM198310273091705. [DOI] [PubMed] [Google Scholar]
- Van Sande J., Decoster C., Dumont J. E. Control and role of cyclic 3',5'-guanosine monophosphate. Biochem Biophys Res Commun. 1975 Jan 20;62(2):168–175. doi: 10.1016/s0006-291x(75)80119-7. [DOI] [PubMed] [Google Scholar]
- Van Sande J., Dumont J. E. Effects of thyrotropin, prostaglandin E1 and iodide on cyclic 3',5'-AMP concentration in dog thyroid slices. Biochim Biophys Acta. 1973 Jul 28;313(2):320–328. doi: 10.1016/0304-4165(73)90031-7. [DOI] [PubMed] [Google Scholar]
- Van Sande J., Lamy F., Lecocq R., Mirkine N., Rocmans P., Cochaux P., Mockel J., Dumont J. E. Pathogenesis of autonomous thyroid nodules: in vitro study of iodine and adenosine 3',5'-monophosphate metabolism. J Clin Endocrinol Metab. 1988 Mar;66(3):570–579. doi: 10.1210/jcem-66-3-570. [DOI] [PubMed] [Google Scholar]
- Wilders-Truschnig M. M., Drexhage H. A., Leb G., Eber O., Brezinschek H. P., Dohr G., Lanzer G., Krejs G. J. Chromatographically purified immunoglobulin G of endemic and sporadic goiter patients stimulates FRTL5 cell growth in a mitotic arrest assay. J Clin Endocrinol Metab. 1990 Feb;70(2):444–452. doi: 10.1210/jcem-70-2-444. [DOI] [PubMed] [Google Scholar]
- Zakarija M., Jin S., McKenzie J. M. Evidence supporting the identity in Graves' disease of thyroid-stimulating antibody and thyroid growth-promoting immunoglobulin G as assayed in FRTL5 cells. J Clin Invest. 1988 Mar;81(3):879–884. doi: 10.1172/JCI113398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zakarija M., McKenzie J. M. Do thyroid growth-promoting immunoglobulins exist? J Clin Endocrinol Metab. 1990 Feb;70(2):308–310. doi: 10.1210/jcem-70-2-308. [DOI] [PubMed] [Google Scholar]
- Zakarija M., McKenzie J. M. The spectrum and significance of autoantibodies reacting with the thyrotropin receptor. Endocrinol Metab Clin North Am. 1987 Jun;16(2):343–363. [PubMed] [Google Scholar]