Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1994 Oct;94(4):1373–1382. doi: 10.1172/JCI117472

Coexpression of glucose transporters and glucokinase in Xenopus oocytes indicates that both glucose transport and phosphorylation determine glucose utilization.

H Morita 1, Y Yano 1, K D Niswender 1, J M May 1, R R Whitesell 1, L Wu 1, R L Printz 1, D K Granner 1, M A Magnuson 1, A C Powers 1
PMCID: PMC295259  PMID: 7929812

Abstract

A Xenopus oocyte expression system was used to examine how glucose transporters (GLUT 2 and GLUT 3) and glucokinase (GK) activity affect glucose utilization. Uninjected oocytes and low rates of both glucose transport and phosphorylation; expression of GLUT 2 or GLUT 3 increased glucose phosphorylation approximately 20-fold by a low Km, endogenous hexokinase at glucose concentrations < or = 1 mM, but not at higher glucose concentrations. Coexpression of functional GK isoforms with GLUT 2 or 3 increased glucose utilization approximately an additional two- to threefold primarily at the physiologic glucose concentrations of 5-20 mM. The Km for glucose of both the hepatic and beta cell isoforms of GK, determined in situ, was approximately 5-10 mM when coexpressed with either GLUT 2 or GLUT 3. The increase in glucose utilization by coexpression of GLUT 3 and GK was dependent upon glucose phosphorylation since two missense GK mutations linked with maturity-onset diabetes, 182: Val-->Met and 228:Thr-->Met, did not increase glucose utilization despite accumulation of both a similar amount of immunoreactive GK protein and glucose inside the cell. Coexpression of a mutant GK and a normal GK isoform did not interfere with the function of the normal GK enzyme. Since the coexpression of GK and a glucose transporter in oocytes resembles conditions in the hepatocyte and pancreatic beta cell, these results indicate that increases in glucose utilization at glucose concentrations > 1 mM depend upon both a functional glucose transporter and GK.

Full text

PDF
1373

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreone T. L., Printz R. L., Pilkis S. J., Magnuson M. A., Granner D. K. The amino acid sequence of rat liver glucokinase deduced from cloned cDNA. J Biol Chem. 1989 Jan 5;264(1):363–369. [PubMed] [Google Scholar]
  2. Byrne M. M., Sturis J., Clément K., Vionnet N., Pueyo M. E., Stoffel M., Takeda J., Passa P., Cohen D., Bell G. I. Insulin secretory abnormalities in subjects with hyperglycemia due to glucokinase mutations. J Clin Invest. 1994 Mar;93(3):1120–1130. doi: 10.1172/JCI117064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fajans S. S., Bell G. I., Bowden D. W. MODY: a model for the study of the molecular genetics of NIDDM. J Lab Clin Med. 1992 Mar;119(3):206–210. [PubMed] [Google Scholar]
  4. Froguel P., Vaxillaire M., Sun F., Velho G., Zouali H., Butel M. O., Lesage S., Vionnet N., Clément K., Fougerousse F. Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus. Nature. 1992 Mar 12;356(6365):162–164. doi: 10.1038/356162a0. [DOI] [PubMed] [Google Scholar]
  5. Garcia J. C., Strube M., Leingang K., Keller K., Mueckler M. M. Amino acid substitutions at tryptophan 388 and tryptophan 412 of the HepG2 (Glut1) glucose transporter inhibit transport activity and targeting to the plasma membrane in Xenopus oocytes. J Biol Chem. 1992 Apr 15;267(11):7770–7776. [PubMed] [Google Scholar]
  6. Gidh-Jain M., Takeda J., Xu L. Z., Lange A. J., Vionnet N., Stoffel M., Froguel P., Velho G., Sun F., Cohen D. Glucokinase mutations associated with non-insulin-dependent (type 2) diabetes mellitus have decreased enzymatic activity: implications for structure/function relationships. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1932–1936. doi: 10.1073/pnas.90.5.1932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gould G. W., Thomas H. M., Jess T. J., Bell G. I. Expression of human glucose transporters in Xenopus oocytes: kinetic characterization and substrate specificities of the erythrocyte, liver, and brain isoforms. Biochemistry. 1991 May 28;30(21):5139–5145. doi: 10.1021/bi00235a004. [DOI] [PubMed] [Google Scholar]
  8. Hammerstedt R. H. The use of Dowex-1-borate to separate 3HOH from 2-3H-glucose. Anal Biochem. 1973 Nov;56(1):292–293. doi: 10.1016/0003-2697(73)90192-9. [DOI] [PubMed] [Google Scholar]
  9. Hattersley A. T., Turner R. C., Permutt M. A., Patel P., Tanizawa Y., Chiu K. C., O'Rahilly S., Watkins P. J., Wainscoat J. S. Linkage of type 2 diabetes to the glucokinase gene. Lancet. 1992 May 30;339(8805):1307–1310. doi: 10.1016/0140-6736(92)91958-b. [DOI] [PubMed] [Google Scholar]
  10. Jetton T. L., Magnuson M. A. Heterogeneous expression of glucokinase among pancreatic beta cells. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2619–2623. doi: 10.1073/pnas.89.7.2619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kahn B. B., Flier J. S. Regulation of glucose-transporter gene expression in vitro and in vivo. Diabetes Care. 1990 Jun;13(6):548–564. doi: 10.2337/diacare.13.6.548. [DOI] [PubMed] [Google Scholar]
  12. Katz J., Rognstad R. The metabolism of glucose-2-T by adipose tissue. J Biol Chem. 1969 Jan 10;244(1):99–106. [PubMed] [Google Scholar]
  13. Kunkel T. A., Bebenek K., McClary J. Efficient site-directed mutagenesis using uracil-containing DNA. Methods Enzymol. 1991;204:125–139. doi: 10.1016/0076-6879(91)04008-c. [DOI] [PubMed] [Google Scholar]
  14. Liang Y., Jetton T. L., Zimmerman E. C., Najafi H., Matschinsky F. M., Magnuson M. A. Effects of alternate RNA splicing on glucokinase isoform activities in the pancreatic islet, liver, and pituitary. J Biol Chem. 1991 Apr 15;266(11):6999–7007. [PubMed] [Google Scholar]
  15. Liang Y., Najafi H., Smith R. M., Zimmerman E. C., Magnuson M. A., Tal M., Matschinsky F. M. Concordant glucose induction of glucokinase, glucose usage, and glucose-stimulated insulin release in pancreatic islets maintained in organ culture. Diabetes. 1992 Jul;41(7):792–806. doi: 10.2337/diab.41.7.792. [DOI] [PubMed] [Google Scholar]
  16. Magnuson M. A., Andreone T. L., Printz R. L., Koch S., Granner D. K. Rat glucokinase gene: structure and regulation by insulin. Proc Natl Acad Sci U S A. 1989 Jul;86(13):4838–4842. doi: 10.1073/pnas.86.13.4838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Matschinsky F. M. Glucokinase as glucose sensor and metabolic signal generator in pancreatic beta-cells and hepatocytes. Diabetes. 1990 Jun;39(6):647–652. doi: 10.2337/diab.39.6.647. [DOI] [PubMed] [Google Scholar]
  18. Meglasson M. D., Matschinsky F. M. New perspectives on pancreatic islet glucokinase. Am J Physiol. 1984 Jan;246(1 Pt 1):E1–13. doi: 10.1152/ajpendo.1984.246.1.E1. [DOI] [PubMed] [Google Scholar]
  19. Meglasson M. D., Matschinsky F. M. Pancreatic islet glucose metabolism and regulation of insulin secretion. Diabetes Metab Rev. 1986;2(3-4):163–214. doi: 10.1002/dmr.5610020301. [DOI] [PubMed] [Google Scholar]
  20. Newgard C. B., Quaade C., Hughes S. D., Milburn J. L. Glucokinase and glucose transporter expression in liver and islets: implications for control of glucose homoeostasis. Biochem Soc Trans. 1990 Oct;18(5):851–853. doi: 10.1042/bst0180851. [DOI] [PubMed] [Google Scholar]
  21. Nishimura H., Pallardo F. V., Seidner G. A., Vannucci S., Simpson I. A., Birnbaum M. J. Kinetics of GLUT1 and GLUT4 glucose transporters expressed in Xenopus oocytes. J Biol Chem. 1993 Apr 25;268(12):8514–8520. [PubMed] [Google Scholar]
  22. Permutt M. A., Chiu K. C., Tanizawa Y. Glucokinase and NIDDM. A candidate gene that paid off. Diabetes. 1992 Nov;41(11):1367–1372. doi: 10.2337/diab.41.11.1367. [DOI] [PubMed] [Google Scholar]
  23. Purich D. L., Fromm H. J., Rudolph F. B. The hexokinases: kinetic, physical, and regulatory properties. Adv Enzymol Relat Areas Mol Biol. 1973;39:249–326. doi: 10.1002/9780470122846.ch4. [DOI] [PubMed] [Google Scholar]
  24. Quaade C., Hughes S. D., Coats W. S., Sestak A. L., Iynedjian P. B., Newgard C. B. Analysis of the protein products encoded by variant glucokinase transcripts via expression in bacteria. FEBS Lett. 1991 Mar 11;280(1):47–52. doi: 10.1016/0014-5793(91)80201-d. [DOI] [PubMed] [Google Scholar]
  25. Stoffel M., Froguel P., Takeda J., Zouali H., Vionnet N., Nishi S., Weber I. T., Harrison R. W., Pilkis S. J., Lesage S. Human glucokinase gene: isolation, characterization, and identification of two missense mutations linked to early-onset non-insulin-dependent (type 2) diabetes mellitus. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7698–7702. doi: 10.1073/pnas.89.16.7698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tanizawa Y., Matsutani A., Chiu K. C., Permutt M. A. Human glucokinase gene: isolation, structural characterization, and identification of a microsatellite repeat polymorphism. Mol Endocrinol. 1992 Jul;6(7):1070–1081. doi: 10.1210/mend.6.7.1354840. [DOI] [PubMed] [Google Scholar]
  27. Thorens B. Facilitated glucose transporters in epithelial cells. Annu Rev Physiol. 1993;55:591–608. doi: 10.1146/annurev.ph.55.030193.003111. [DOI] [PubMed] [Google Scholar]
  28. Trus M. D., Zawalich W. S., Burch P. T., Berner D. K., Weill V. A., Matschinsky F. M. Regulation of glucose metabolism in pancreatic islets. Diabetes. 1981 Nov;30(11):911–922. doi: 10.2337/diab.30.11.911. [DOI] [PubMed] [Google Scholar]
  29. Unger R. H. Diabetic hyperglycemia: link to impaired glucose transport in pancreatic beta cells. Science. 1991 Mar 8;251(4998):1200–1205. doi: 10.1126/science.2006409. [DOI] [PubMed] [Google Scholar]
  30. Velho G., Froguel P., Clement K., Pueyo M. E., Rakotoambinina B., Zouali H., Passa P., Cohen D., Robert J. J. Primary pancreatic beta-cell secretory defect caused by mutations in glucokinase gene in kindreds of maturity onset diabetes of the young. Lancet. 1992 Aug 22;340(8817):444–448. doi: 10.1016/0140-6736(92)91768-4. [DOI] [PubMed] [Google Scholar]
  31. Vionnet N., Stoffel M., Takeda J., Yasuda K., Bell G. I., Zouali H., Lesage S., Velho G., Iris F., Passa P. Nonsense mutation in the glucokinase gene causes early-onset non-insulin-dependent diabetes mellitus. Nature. 1992 Apr 23;356(6371):721–722. doi: 10.1038/356721a0. [DOI] [PubMed] [Google Scholar]
  32. Whitesell R. R., Aboumrad M. K., Powers A. C., Regen D. M., Le C., Beechem J. M., May J. M., Abumrad N. A. Coupling of glucose transport and phosphorylation in Xenopus oocytes and cultured cells: determination of the rate-limiting step. J Cell Physiol. 1993 Dec;157(3):509–518. doi: 10.1002/jcp.1041570310. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES