Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1991 May;87(5):1732–1738. doi: 10.1172/JCI115191

ATP receptor regulation of adenylate cyclase and protein kinase C activity in cultured renal LLC-PK1 cells.

R J Anderson 1, R Breckon 1, B S Dixon 1
PMCID: PMC295279  PMID: 1850760

Abstract

In cultured intact LLC-PK1 renal epithelial cells, a nonhydrolyzable ATP analogue, ATP gamma S, inhibits AVP-stimulated cAMP formation. In LLC-PK1 membranes, several ATP analogues inhibit basal, GTP-, forskolin-, and AVP-stimulated adenylate cyclase activity in a dose-dependent manner. The rank order potency of inhibition by ATP analogues suggests that a P2y type of ATP receptor is involved in this inhibition. The compound ATP gamma S inhibits agonist-stimulated adenylate cyclase activity in solubilized and in isobutylmethylxanthine (IBMX) and quinacrine pretreated membranes, suggesting that ATP gamma S inhibition occurs independent of AVP and A1 adenosine receptors and of phospholipase A2 activity. The ATP gamma S inhibition of AVP-stimulated adenylate cyclase activity is not affected by pertussis toxin but is attenuated by GDP beta S, suggesting a possible role for a pertussis toxin insensitive G protein in the inhibition. Exposure of intact LLC-PK cells to ATP gamma S results in a significant increase in protein kinase C activity. However, neither of two protein kinase C inhibitors (staurosporine and H-7) prevents ATP gamma S inhibition of AVP-stimulated adenylate cyclase activity, suggesting that this inhibition occurs by a protein kinase C independent mechanism. These findings suggest the presence of functional P2y purinoceptors coupled to two signal transduction pathways in cultured renal epithelial cells. The effect of P2y purinoceptors to inhibit AVP-stimulated adenylate cyclase activity may be mediated, at least in part, by a pertussis toxin insensitive G protein.

Full text

PDF
1732

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arend L. J., Burnatowska-Hledin M. A., Spielman W. S. Adenosine receptor-mediated calcium mobilization in cortical collecting tubule cells. Am J Physiol. 1988 Nov;255(5 Pt 1):C581–C588. doi: 10.1152/ajpcell.1988.255.5.C581. [DOI] [PubMed] [Google Scholar]
  2. Arend L. J., Handler J. S., Rhim J. S., Gusovsky F., Spielman W. S. Adenosine-sensitive phosphoinositide turnover in a newly established renal cell line. Am J Physiol. 1989 Jun;256(6 Pt 2):F1067–F1074. doi: 10.1152/ajprenal.1989.256.6.F1067. [DOI] [PubMed] [Google Scholar]
  3. Arend L. J., Sonnenburg W. K., Smith W. L., Spielman W. S. A1 and A2 adenosine receptors in rabbit cortical collecting tubule cells. Modulation of hormone-stimulated cAMP. J Clin Invest. 1987 Mar;79(3):710–714. doi: 10.1172/JCI112875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boeynaems J. M., Pearson J. D. P2 purinoceptors on vascular endothelial cells: physiological significance and transduction mechanisms. Trends Pharmacol Sci. 1990 Jan;11(1):34–37. doi: 10.1016/0165-6147(90)90039-b. [DOI] [PubMed] [Google Scholar]
  5. Boyer J. L., Cooper C. L., Harden T. K. [32P]3'-O-(4-benzoyl)benzoyl ATP as a photoaffinity label for a phospholipase C-coupled P2Y-purinergic receptor. J Biol Chem. 1990 Aug 15;265(23):13515–13520. [PubMed] [Google Scholar]
  6. Boyer J. L., Downes C. P., Harden T. K. Kinetics of activation of phospholipase C by P2Y purinergic receptor agonists and guanine nucleotides. J Biol Chem. 1989 Jan 15;264(2):884–890. [PubMed] [Google Scholar]
  7. Burnstock G., Kennedy C. Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol. 1985;16(5):433–440. doi: 10.1016/0306-3623(85)90001-1. [DOI] [PubMed] [Google Scholar]
  8. Charest R., Blackmore P. F., Exton J. H. Characterization of responses of isolated rat hepatocytes to ATP and ADP. J Biol Chem. 1985 Dec 15;260(29):15789–15794. [PubMed] [Google Scholar]
  9. Cheung W. Y. Inhibition of cyclic nucleotide phosphodiesterase by adenosine 5'triphosphate and inorganic pyrophosphate. Biochem Biophys Res Commun. 1966 Apr 19;23(2):214–219. doi: 10.1016/0006-291x(66)90530-4. [DOI] [PubMed] [Google Scholar]
  10. Cooper C. L., Morris A. J., Harden T. K. Guanine nucleotide-sensitive interaction of a radiolabeled agonist with a phospholipase C-linked P2y-purinergic receptor. J Biol Chem. 1989 Apr 15;264(11):6202–6206. [PubMed] [Google Scholar]
  11. Dillingham M. A., Anderson R. J. Mechanism of neuropeptide Y inhibition of vasopressin action in rat cortical collecting tubule. Am J Physiol. 1989 Mar;256(3 Pt 2):F408–F413. doi: 10.1152/ajprenal.1989.256.3.F408. [DOI] [PubMed] [Google Scholar]
  12. Dillingham M. A., Anderson R. J. Purinergic regulation of basal and arginine vasopressin-stimulated hydraulic conductivity in rabbit cortical collecting tubule. J Membr Biol. 1985;88(3):277–281. doi: 10.1007/BF01871091. [DOI] [PubMed] [Google Scholar]
  13. Dixon B. S., Breckon R., Burke C., Anderson R. J. Phorbol esters inhibit adenylate cyclase activity in cultured collecting tubular cells. Am J Physiol. 1988 Jan;254(1 Pt 1):C183–C191. doi: 10.1152/ajpcell.1988.254.1.C183. [DOI] [PubMed] [Google Scholar]
  14. Dixon B. S., Breckon R., Fortune J., Sutherland E., Simon F. R., Anderson R. J. Bradykinin activates protein kinase C in cultured cortical collecting tubular cells. Am J Physiol. 1989 Nov;257(5 Pt 2):F808–F817. doi: 10.1152/ajprenal.1989.257.5.F808. [DOI] [PubMed] [Google Scholar]
  15. Dixon B. S., Breckon R., Kaehny M. M., Dillingham M. A., Anderson R. J. Histidine regulation of cyclic AMP metabolism in cultured renal epithelial LLC-PK1 cells. J Biol Chem. 1990 Jan 15;265(2):760–766. [PubMed] [Google Scholar]
  16. Dousa T., Rychlík I. The metabolism of adenosine 3',5'-cyclic phosphate. II. Some properties of adenosine-3',5'-cyclic-phosphate phosphodiesterase from the rat kidney. Biochim Biophys Acta. 1970 Mar 19;204(1):10–17. doi: 10.1016/0005-2787(70)90485-5. [DOI] [PubMed] [Google Scholar]
  17. Dunlay R., Hruska K. PTH receptor coupling to phospholipase C is an alternate pathway of signal transduction in bone and kidney. Am J Physiol. 1990 Feb;258(2 Pt 2):F223–F231. doi: 10.1152/ajprenal.1990.258.2.F223. [DOI] [PubMed] [Google Scholar]
  18. Gordon J. L. Extracellular ATP: effects, sources and fate. Biochem J. 1986 Jan 15;233(2):309–319. doi: 10.1042/bj2330309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Irving H. R., Exton J. H. Phosphatidylcholine breakdown in rat liver plasma membranes. Roles of guanine nucleotides and P2-purinergic agonists. J Biol Chem. 1987 Mar 15;262(8):3440–3443. [PubMed] [Google Scholar]
  20. Kelley G. G., Poeschla E. M., Barron H. V., Forrest J. N., Jr A1 adenosine receptors inhibit chloride transport in the shark rectal gland. Dissociation of inhibition and cyclic AMP. J Clin Invest. 1990 May;85(5):1629–1636. doi: 10.1172/JCI114614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lang M. A., Preston A. S., Handler J. S., Forrest J. N., Jr Adenosine stimulates sodium transport in kidney A6 epithelia in culture. Am J Physiol. 1985 Sep;249(3 Pt 1):C330–C336. doi: 10.1152/ajpcell.1985.249.3.C330. [DOI] [PubMed] [Google Scholar]
  22. Okajima F., Sato K., Nazarea M., Sho K., Kondo Y. A permissive role of pertussis toxin substrate G-protein in P2-purinergic stimulation of phosphoinositide turnover and arachidonate release in FRTL-5 thyroid cells. Cooperative mechanism of signal transduction systems. J Biol Chem. 1989 Aug 5;264(22):13029–13037. [PubMed] [Google Scholar]
  23. Okajima F., Tokumitsu Y., Kondo Y., Ui M. P2-purinergic receptors are coupled to two signal transduction systems leading to inhibition of cAMP generation and to production of inositol trisphosphate in rat hepatocytes. J Biol Chem. 1987 Oct 5;262(28):13483–13490. [PubMed] [Google Scholar]
  24. Rorive G., Kleinzeller A. The effect of ATP and Ca 2+ on the cell volume in isolated kidney tubules. Biochim Biophys Acta. 1972 Jul 3;274(1):226–239. doi: 10.1016/0005-2736(72)90296-9. [DOI] [PubMed] [Google Scholar]
  25. Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
  26. Sano K., Voelker D. R., Mason R. J. Involvement of protein kinase C in pulmonary surfactant secretion from alveolar type II cells. J Biol Chem. 1985 Oct 15;260(23):12725–12729. [PubMed] [Google Scholar]
  27. Simmons N. L. Identification of a purine (P2) receptor linked to ion transport in a cultured renal (MDCK) epithelium. Br J Pharmacol. 1981 Jun;73(2):379–384. doi: 10.1111/j.1476-5381.1981.tb10432.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Simmons N. L. Stimulation of Cl- secretion by exogenous ATP in cultured MDCK epithelial monolayers. Biochim Biophys Acta. 1981 Aug 20;646(2):231–242. doi: 10.1016/0005-2736(81)90329-1. [DOI] [PubMed] [Google Scholar]
  29. Spielman W. S., Thompson C. I. A proposed role for adenosine in the regulation of renal hemodynamics and renin release. Am J Physiol. 1982 May;242(5):F423–F435. doi: 10.1152/ajprenal.1982.242.5.F423. [DOI] [PubMed] [Google Scholar]
  30. Weihprecht H., Lorenz J. N., Schnermann J., Skøtt O., Briggs J. P. Effect of adenosine1-receptor blockade on renin release from rabbit isolated perfused juxtaglomerular apparatus. J Clin Invest. 1990 May;85(5):1622–1628. doi: 10.1172/JCI114613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Weinberg J. M., Davis J. A., Shayman J. A., Knight P. R. Alterations of cytosolic calcium in LLC-PK1 cells induced by vasopressin and exogenous purines. Am J Physiol. 1989 May;256(5 Pt 1):C967–C976. doi: 10.1152/ajpcell.1989.256.5.C967. [DOI] [PubMed] [Google Scholar]
  32. Williams M. Purine receptors in mammalian tissues: pharmacology and functional significance. Annu Rev Pharmacol Toxicol. 1987;27:315–345. doi: 10.1146/annurev.pa.27.040187.001531. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES