Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1991 May;87(5):1853–1857. doi: 10.1172/JCI115207

Native and recombinant human hepatocyte growth factors are highly potent promoters of DNA synthesis in both human and rat hepatocytes.

A J Strain 1, T Ismail 1, H Tsubouchi 1, N Arakaki 1, T Hishida 1, N Kitamura 1, Y Daikuhara 1, P McMaster 1
PMCID: PMC295309  PMID: 1827130

Abstract

Human hepatocyte growth factor (hHGF) has recently been expressed as a recombinant polypeptide from Chinese hampster ovary cell transfectants. Using a primary rat hepatocyte bioassay, we have tested the biological activity of recombinant hHGF and compared it with native hHGF. Dose-response curves were almost identical, with half-maximal stimulation of DNA synthesis at 1-2 ng/ml (equivalent to approximately 10 pM). S-phase labeling index was similarly enhanced and numerous mitotic cells were observed. Recombinant and native hHGF also stimulated DNA synthesis and S-phase labeling index in primary adult human hepatocytes. Human cells were more responsive than rat hepatocytes, with recombinant hHGF slightly more potent than native hHGF (half-maximal stimulation 0.3 and 0.6 ng/ml, respectively). Since HGF levels rise in patients with fulminant hepatic failure and in animals after partial hepatectomy or administration of hepatotoxins, situations where liver regeneration occurs, HGF is suggested to play a key role in regulation of hepatic growth. The high potency of the factor on human hepatocytes reinforces its candidacy as a critical mitogen in human liver growth. The availability of a recombinant hHGF opens the way for in vivo experimental studies and to the possibility of using hHGF as a clinical therapeutic agent, either alone or in combination with other factors.

Full text

PDF
1853

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belzer F. O., Southard J. H. Principles of solid-organ preservation by cold storage. Transplantation. 1988 Apr;45(4):673–676. doi: 10.1097/00007890-198804000-00001. [DOI] [PubMed] [Google Scholar]
  2. Braun L., Mead J. E., Panzica M., Mikumo R., Bell G. I., Fausto N. Transforming growth factor beta mRNA increases during liver regeneration: a possible paracrine mechanism of growth regulation. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1539–1543. doi: 10.1073/pnas.85.5.1539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fausto N., Mead J. E. Regulation of liver growth: protooncogenes and transforming growth factors. Lab Invest. 1989 Jan;60(1):4–13. [PubMed] [Google Scholar]
  4. Gohda E., Tsubouchi H., Nakayama H., Hirono S., Sakiyama O., Takahashi K., Miyazaki H., Hashimoto S., Daikuhara Y. Purification and partial characterization of hepatocyte growth factor from plasma of a patient with fulminant hepatic failure. J Clin Invest. 1988 Feb;81(2):414–419. doi: 10.1172/JCI113334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gohda E., Tsubouchi H., Nakayama H., Hirono S., Takahashi K., Koura M., Hashimoto S., Daikuhara Y. Human hepatocyte growth factor in plasma from patients with fulminant hepatic failure. Exp Cell Res. 1986 Sep;166(1):139–150. doi: 10.1016/0014-4827(86)90514-8. [DOI] [PubMed] [Google Scholar]
  6. Howl J., Ismail T., Strain A., Wheatley M. Do vasopressin receptors have a significant role in the hormonal regulation of human liver function? Biochem Soc Trans. 1990 Jun;18(3):399–400. doi: 10.1042/bst0180399. [DOI] [PubMed] [Google Scholar]
  7. Kan M., Huang J. S., Mansson P. E., Yasumitsu H., Carr B., McKeehan W. L. Heparin-binding growth factor type 1 (acidic fibroblast growth factor): a potential biphasic autocrine and paracrine regulator of hepatocyte regeneration. Proc Natl Acad Sci U S A. 1989 Oct;86(19):7432–7436. doi: 10.1073/pnas.86.19.7432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kinoshita T., Tashiro K., Nakamura T. Marked increase of HGF mRNA in non-parenchymal liver cells of rats treated with hepatotoxins. Biochem Biophys Res Commun. 1989 Dec 29;165(3):1229–1234. doi: 10.1016/0006-291x(89)92733-2. [DOI] [PubMed] [Google Scholar]
  9. McGowan J. A., Strain A. J., Bucher N. L. DNA synthesis in primary cultures of adult rat hepatocytes in a defined medium: effects of epidermal growth factor, insulin, glucagon, and cyclic-AMP. J Cell Physiol. 1981 Sep;108(3):353–363. doi: 10.1002/jcp.1041080309. [DOI] [PubMed] [Google Scholar]
  10. Mead J. E., Fausto N. Transforming growth factor alpha may be a physiological regulator of liver regeneration by means of an autocrine mechanism. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1558–1562. doi: 10.1073/pnas.86.5.1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Michalopoulos G., Houck K. A., Dolan M. L., Leutteke N. C. Control of hepatocyte replication by two serum factors. Cancer Res. 1984 Oct;44(10):4414–4419. [PubMed] [Google Scholar]
  12. Miyazawa K., Tsubouchi H., Naka D., Takahashi K., Okigaki M., Arakaki N., Nakayama H., Hirono S., Sakiyama O., Takahashi K. Molecular cloning and sequence analysis of cDNA for human hepatocyte growth factor. Biochem Biophys Res Commun. 1989 Sep 15;163(2):967–973. doi: 10.1016/0006-291x(89)92316-4. [DOI] [PubMed] [Google Scholar]
  13. Murakami H. Serum-free media used for cultivation of hybridomas. Adv Biotechnol Processes. 1989;11:107–141. [PubMed] [Google Scholar]
  14. Nakamura T., Nawa K., Ichihara A., Kaise N., Nishino T. Purification and subunit structure of hepatocyte growth factor from rat platelets. FEBS Lett. 1987 Nov 30;224(2):311–316. doi: 10.1016/0014-5793(87)80475-1. [DOI] [PubMed] [Google Scholar]
  15. Nakamura T., Nawa K., Ichihara A. Partial purification and characterization of hepatocyte growth factor from serum of hepatectomized rats. Biochem Biophys Res Commun. 1984 Aug 16;122(3):1450–1459. doi: 10.1016/0006-291x(84)91253-1. [DOI] [PubMed] [Google Scholar]
  16. Nakamura T., Nishizawa T., Hagiya M., Seki T., Shimonishi M., Sugimura A., Tashiro K., Shimizu S. Molecular cloning and expression of human hepatocyte growth factor. Nature. 1989 Nov 23;342(6248):440–443. doi: 10.1038/342440a0. [DOI] [PubMed] [Google Scholar]
  17. O'Hare K., Benoist C., Breathnach R. Transformation of mouse fibroblasts to methotrexate resistance by a recombinant plasmid expressing a prokaryotic dihydrofolate reductase. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1527–1531. doi: 10.1073/pnas.78.3.1527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Okajima A., Miyazawa K., Kitamura N. Primary structure of rat hepatocyte growth factor and induction of its mRNA during liver regeneration following hepatic injury. Eur J Biochem. 1990 Oct 24;193(2):375–381. doi: 10.1111/j.1432-1033.1990.tb19349.x. [DOI] [PubMed] [Google Scholar]
  19. Russell W. E., Bucher N. L. Vasopressin modulates liver regeneration in the Brattleboro rat. Am J Physiol. 1983 Aug;245(2):G321–G324. doi: 10.1152/ajpgi.1983.245.2.G321. [DOI] [PubMed] [Google Scholar]
  20. Southern P. J., Berg P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet. 1982;1(4):327–341. [PubMed] [Google Scholar]
  21. Strain A. J., McGowan J. A., Bucher N. L. Stimulation of DNA synthesis in primary cultures of adult rat hepatocytes by rat platelet-associated substance(s). In Vitro. 1982 Feb;18(2):108–116. doi: 10.1007/BF02796402. [DOI] [PubMed] [Google Scholar]
  22. Strain A. J. Transforming growth factor beta and inhibition of hepatocellular proliferation. Scand J Gastroenterol Suppl. 1988;151:37–45. doi: 10.3109/00365528809095912. [DOI] [PubMed] [Google Scholar]
  23. Strom S. C., Jirtle R. L., Jones R. S., Novicki D. L., Rosenberg M. R., Novotny A., Irons G., McLain J. R., Michalopoulos G. Isolation, culture, and transplantation of human hepatocytes. J Natl Cancer Inst. 1982 May;68(5):771–778. [PubMed] [Google Scholar]
  24. Tashiro K., Hagiya M., Nishizawa T., Seki T., Shimonishi M., Shimizu S., Nakamura T. Deduced primary structure of rat hepatocyte growth factor and expression of the mRNA in rat tissues. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3200–3204. doi: 10.1073/pnas.87.8.3200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tsubouchi H., Hirono S., Gohda E., Nakayama H., Takahashi K., Sakiyama O., Miyazaki H., Sugihara J., Tomita E., Muto Y. Clinical significance of human hepatocyte growth factor in blood from patients with fulminant hepatic failure. Hepatology. 1989 Jun;9(6):875–881. doi: 10.1002/hep.1840090615. [DOI] [PubMed] [Google Scholar]
  26. Vandekerckhove A., Miot F., Keppens S., De Wulf H. Lack of V1 vasopressin receptors in rabbit hepatocytes. Biochem J. 1989 Apr 15;259(2):609–611. doi: 10.1042/bj2590609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zarnegar R., Muga S., Enghild J., Michalopoulos G. NH2-terminal amino acid sequence of rabbit hepatopoietin A, a heparin-binding polypeptide growth factor for hepatocytes. Biochem Biophys Res Commun. 1989 Sep 29;163(3):1370–1376. doi: 10.1016/0006-291x(89)91130-3. [DOI] [PubMed] [Google Scholar]
  28. Zarnegar R., Muga S., Rahija R., Michalopoulos G. Tissue distribution of hepatopoietin-A: a heparin-binding polypeptide growth factor for hepatocytes. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1252–1256. doi: 10.1073/pnas.87.3.1252. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES