Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1991 Aug;88(2):500–504. doi: 10.1172/JCI115331

ATP-dependent K+ channels modulate vasoconstrictor responses to severe hypoxia in isolated ferret lungs.

C M Wiener 1, A Dunn 1, J T Sylvester 1
PMCID: PMC295371  PMID: 1907614

Abstract

In normo- and hypoglycemic ferret lungs, the pulmonary vascular response to severe hypoxia (PiO2 less than or equal to 10 mmHg) is characterized by an initial intense vasoconstriction followed by marked vasodilation, whereas in hyperglycemic lungs, vasodilation is minimal, causing vasoconstriction to be sustained. In contrast, the response to moderate hypoxia is characterized by a slowly developing sustained vasoconstriction which is unaffected by glucose concentration. To determine the role of ATP-dependent K+ (KATP) channels in these responses, we examined the effects of cromakalim, which opens KATP channels, and glibenclamide, which closes them. During steady-state vasoconstriction induced in isolated ferret lungs by moderate hypoxia, cromakalim caused dose-dependent vasodilation (EC50 = 7 x 10(-7) M) which was reversed by glibenclamide (IC50 = 8 x 10(-7) M), indicating that KATP channels were present and capable of modulating vascular tone. During severe hypoxia in hypoglycemic lungs [( glucose] less than 1 mM), glibenclamide markedly inhibited the secondary vasodilation. Raising perfusate glucose concentration to 14 +/- 0.4 mM had the same effect. As a result, initial vasoconstrictor responses were well sustained. However, neither glibenclamide nor hyperglycemia affected vasoconstrictor responses to moderate hypoxia or KCl, indicating that effects during severe hypoxia were not due to nonspecific potentiation of vasoconstriction. These findings suggest that in the ferret lung (a) severe hypoxia decreased ATP concentration and thereby opened KATP channels, resulting in increased K+ efflux, hyperpolarization, vasodilation, and reversal of the initial vasoconstrictor response; and (b) hyperglycemia prevented this sequence of events.

Full text

PDF
500

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. J., Barakeh J., Laskey R., Van Breemen C. Ion channels and regulation of intracellular calcium in vascular endothelial cells. FASEB J. 1989 Oct;3(12):2389–2400. doi: 10.1096/fasebj.3.12.2477294. [DOI] [PubMed] [Google Scholar]
  2. Amoroso S., Schmid-Antomarchi H., Fosset M., Lazdunski M. Glucose, sulfonylureas, and neurotransmitter release: role of ATP-sensitive K+ channels. Science. 1990 Feb 16;247(4944):852–854. doi: 10.1126/science.2305257. [DOI] [PubMed] [Google Scholar]
  3. Ashcroft F. M. Adenosine 5'-triphosphate-sensitive potassium channels. Annu Rev Neurosci. 1988;11:97–118. doi: 10.1146/annurev.ne.11.030188.000525. [DOI] [PubMed] [Google Scholar]
  4. Ashcroft F. M., Harrison D. E., Ashcroft S. J. Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. 1984 Nov 29-Dec 5Nature. 312(5993):446–448. doi: 10.1038/312446a0. [DOI] [PubMed] [Google Scholar]
  5. Cavero I., Mondot S., Mestre M. Vasorelaxant effects of cromakalim in rats are mediated by glibenclamide-sensitive potassium channels. J Pharmacol Exp Ther. 1989 Mar;248(3):1261–1268. [PubMed] [Google Scholar]
  6. Cocks T. M., King S. J., Angus J. A. Glibenclamide is a competitive antagonist of the thromboxane A2 receptor in dog coronary artery in vitro. Br J Pharmacol. 1990 Jun;100(2):375–378. doi: 10.1111/j.1476-5381.1990.tb15812.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cook D. L., Hales C. N. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature. 1984 Sep 20;311(5983):271–273. doi: 10.1038/311271a0. [DOI] [PubMed] [Google Scholar]
  8. Cook N. S. The pharmacology of potassium channels and their therapeutic potential. Trends Pharmacol Sci. 1988 Jan;9(1):21–28. doi: 10.1016/0165-6147(88)90238-6. [DOI] [PubMed] [Google Scholar]
  9. Daut J., Maier-Rudolph W., von Beckerath N., Mehrke G., Günther K., Goedel-Meinen L. Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science. 1990 Mar 16;247(4948):1341–1344. doi: 10.1126/science.2107575. [DOI] [PubMed] [Google Scholar]
  10. Eltze M. Glibenclamide is a competitive antagonist of cromakalim, pinacidil and RP 49356 in guinea-pig pulmonary artery. Eur J Pharmacol. 1989 Jun 20;165(2-3):231–239. doi: 10.1016/0014-2999(89)90717-6. [DOI] [PubMed] [Google Scholar]
  11. Gottlieb J. E., McGeady M., Adkinson N. F., Jr, Sylvester J. T. Effects of cyclo- and lipoxygenase inhibitors on hypoxic vasoconstriction in isolated ferret lungs. J Appl Physiol (1985) 1988 Mar;64(3):936–943. doi: 10.1152/jappl.1988.64.3.936. [DOI] [PubMed] [Google Scholar]
  12. Gottlieb J. E., Peake M. D., Sylvester J. T. Adenosine and hypoxic pulmonary vasodilation. Am J Physiol. 1984 Oct;247(4 Pt 2):H541–H547. doi: 10.1152/ajpheart.1984.247.4.H541. [DOI] [PubMed] [Google Scholar]
  13. Harabin A. L., Peake M. D., Sylvester J. T. Effect of severe hypoxia on the pulmonary vascular response to vasoconstrictor agents. J Appl Physiol Respir Environ Exerc Physiol. 1981 Mar;50(3):561–565. doi: 10.1152/jappl.1981.50.3.561. [DOI] [PubMed] [Google Scholar]
  14. Noma A. ATP-regulated K+ channels in cardiac muscle. Nature. 1983 Sep 8;305(5930):147–148. doi: 10.1038/305147a0. [DOI] [PubMed] [Google Scholar]
  15. Peake M. D., Harabin A. L., Brennan N. J., Sylvester J. T. Steady-state vascular responses to graded hypoxia in isolated lungs of five species. J Appl Physiol Respir Environ Exerc Physiol. 1981 Nov;51(5):1214–1219. doi: 10.1152/jappl.1981.51.5.1214. [DOI] [PubMed] [Google Scholar]
  16. Quast U., Cook N. S. In vitro and in vivo comparison of two K+ channel openers, diazoxide and cromakalim, and their inhibition by glibenclamide. J Pharmacol Exp Ther. 1989 Jul;250(1):261–271. [PubMed] [Google Scholar]
  17. Robertson B. E., Paterson D. J., Peers C., Nye P. C. Tolbutamide reverses hypoxic pulmonary vasoconstriction in isolated rat lungs. Q J Exp Physiol. 1989 Nov;74(6):959–962. doi: 10.1113/expphysiol.1989.sp003369. [DOI] [PubMed] [Google Scholar]
  18. Schmid-Antomarchi H., De Weille J., Fosset M., Lazdunski M. The receptor for antidiabetic sulfonylureas controls the activity of the ATP-modulated K+ channel in insulin-secreting cells. J Biol Chem. 1987 Nov 25;262(33):15840–15844. [PubMed] [Google Scholar]
  19. Standen N. B., Quayle J. M., Davies N. W., Brayden J. E., Huang Y., Nelson M. T. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science. 1989 Jul 14;245(4914):177–180. doi: 10.1126/science.2501869. [DOI] [PubMed] [Google Scholar]
  20. Taylor S. G., Weston A. H. Endothelium-derived hyperpolarizing factor: a new endogenous inhibitor from the vascular endothelium. Trends Pharmacol Sci. 1988 Aug;9(8):272–274. doi: 10.1016/0165-6147(88)90003-x. [DOI] [PubMed] [Google Scholar]
  21. Trube G., Rorsman P., Ohno-Shosaku T. Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic beta-cells. Pflugers Arch. 1986 Nov;407(5):493–499. doi: 10.1007/BF00657506. [DOI] [PubMed] [Google Scholar]
  22. Wiener C. M., Sylvester J. T. Effects of glucose on hypoxic vasoconstriction in isolated ferret lungs. J Appl Physiol (1985) 1991 Jan;70(1):439–446. doi: 10.1152/jappl.1991.70.1.439. [DOI] [PubMed] [Google Scholar]
  23. Winquist R. J., Heaney L. A., Wallace A. A., Baskin E. P., Stein R. B., Garcia M. L., Kaczorowski G. J. Glyburide blocks the relaxation response to BRL 34915 (cromakalim), minoxidil sulfate and diazoxide in vascular smooth muscle. J Pharmacol Exp Ther. 1989 Jan;248(1):149–156. [PubMed] [Google Scholar]
  24. Yuan X. J., Tod M. L., Rubin L. J., Blaustein M. P. Contrasting effects of hypoxia on tension in rat pulmonary and mesenteric arteries. Am J Physiol. 1990 Aug;259(2 Pt 2):H281–H289. doi: 10.1152/ajpheart.1990.259.2.H281. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES