Skip to main content
Human Molecular Genetics logoLink to Human Molecular Genetics
. 2010 Aug 30;19(R2):R137–R144. doi: 10.1093/hmg/ddq368

Synthetic associations in the context of genome-wide association scan signals

Gisela Orozco 1, Jeffrey C Barrett 2, Eleftheria Zeggini 2,*
PMCID: PMC2953742  PMID: 20805105

Abstract

Genome-wide association studies (GWAS) have successfully identified a large number of genetic variants associated with complex traits, but these only explain a small proportion of the total heritability. It has been recently proposed that rare variants can create ‘synthetic association' signals in GWAS, by occurring more often in association with one of the alleles of a common tag single nucleotide polymorphism. While the ultimate evaluation of this hypothesis will require the completion of large-scale sequencing studies, it is informative to place it in the broader context of what is known about the genetic architecture of complex disease. In this review, we draw from empirical and theoretical data to summarize evidence showing that synthetic associations do not underlie many reported GWAS associations.

GENOME-WIDE ASSOCIATION STUDIES AND ‘THE MISSING HERITABILITY'

Numerous common human diseases and phenotypic traits are believed to arise from a combination of genetic and environmental factors. The unravelling of the genetic predisposition to complex traits is a major challenge, and it could lead to better prevention, diagnosis and treatment of disease.

Recently, advances in genotyping technologies, reduction in genotyping costs and the availability of data regarding genome-wide sequence variation through the International HapMap Project and 1000 genomes project have made genome-wide association studies (GWAS) possible. GWAS have emerged as a powerful tool for identifying genetic variants associated with complex traits. In the past few years, more than 500 loci have been found to be associated with human common diseases and traits (1). GWAS have proven to be much more successful than linkage studies, which were underpowered to detect variants of modest effect (2), and candidate gene studies, which are non-systematic and biased due to our limited knowledge of the biological pathways implicated in disease pathogenesis (3).

GWAS are based on the common disease–common variant (CDCV) hypothesis (4), which states that relatively common genetic variants (MAF > 5%) of relatively low penetrance are important contributors to the genetic susceptibility to common diseases. Well-powered GWAS, which capture a substantial majority of common variation in the genome, have been now conducted for many common diseases. However, for the majority of these diseases, common variants explain only a small proportion of heritability (5), due to small individual effect sizes. It has been estimated that only 13% of all identified susceptibility loci have odds ratios (OR) above 2, and only 1% have OR above 10 (6).  For example, if we consider a total estimated sibling recurrence risk ratio (λs) of 5–10 for rheumatoid arthritis (RA) (7), 15 for type 1 diabetes (T1D) (8), 17–35 for Crohn's disease (CD) (9) and 3 for type 2 diabetes (T2D) (10), their established susceptibility loci would contribute ∼33–47%, 55.6%, 10–12.6% and 11.9% of the total heritability, respectively (Table 1).

Table 1.

Established susceptibility loci for RA, T1D, CD and T2D

Chromosome SNP Position Region/gene RAF OR λs Reference
Rheumatoid arthritis
 1p36 rs3890745 2553624 TNFSFR14 0.68 1.12 1.003 (16)
 1p13 rs2476601 114377568 PTPN22 0.10 1.94 1.068 (16)
 1p13 rs11586238 117263138 CD2, CD58 0.24 1.13 1.003 (16)
 1q23 rs12746613 161467042 FCGR2A 0.12 1.13 1.002 (16)
 1q31 rs10919563 198700442 PTPRC 0.87 1.14 1.002 (16)
 2p16 rs13031237 61136129 REL 0.37 1.13 1.004 (16)
 2p14 rs934734 65595586 SPRED2 0.49 1.13 1.004 (16)
 2q11 rs10865035 100835734 AFF3 0.47 1.12 1.003 (16)
 2q32 rs7574865 191964633 STAT4 0.22 1.16 1.004 (16)
 2q33 rs1980422 204610396 CD28 0.24 1.12 1.002 (16)
 2q33 rs3087243 204738919 CTLA4 0.56 1.15 1.005 (16)
 3p14 rs13315591 58556841 PXK 0.09 1.29 1.007 (16)
 4p15 rs874040 26108197 RBPJ 0.30 1.14 1.004 (16)
 4q27 rs6822844 123509421 IL2, IL21 0.82 1.11 1.002 (16)
 5q11 rs6859219 55438580 ANKRD55, IL6ST 0.79 1.28 1.009 (16)
 5q21 rs26232 102596720 C5orf13 0.68 1.14 1.004 (16)
 6p21 HLA 1.800 (70,71)
 6q21 rs548234 106568034 PRDM1 0.33 1.10 1.002 (16)
 6q23 rs10499194 138002637 TNFAIP3 0.73 1.10 1.002 (16)
 6q23 rs6920220 138006504 TNFAIP3 0.22 1.22 1.008 (16)
 6q23 rs5029937 138195151 TNFAIP3 0.04 1.40 1.006 (16)
 6q25 rs394581 159482521 TAGAP 0.70 1.10 1.002 (16)
 6q27 rs3093023 167534290 CCR6 0.43 1.13 1.004 (16)
 7q32 rs10488631 128594183 IRF5 0.11 1.19 1.003 (16)
 8p23 rs2736340 11343973 BLK 0.25 1.12 1.003 (16)
 9p13 rs2812378 34710260 CCL21 0.34 1.10 1.002 (16)
 9q33 rs3761847 123690239 TRAF1, C5 0.43 1.13 1.004 (16)
 10p15 rs2104286 6099045 IL2RA 0.73 1.09 1.001 (16)
 10p15 rs4750316 6393260 PRKCQ 0.81 1.15 1.003 (16)
 11p12 rs540386 36525293 TRAF6 0.86 1.14 1.002 (16)
 12q13 rs1678542 57968715 KIF5A 0.62 1.10 1.002 (16)
 20q13 rs4810485 44747947 CD40 0.75 1.18 1.005 (16)
 22q12 rs3218253 37544810 IL2RB 0.26 1.09 1.001 (16)
Type 1 diabetes
 1p31 rs2269241 64108771 PGM1 0.19 1.10 1.001 (15)
 1p13 rs2476601 114377568 PTPN22 0.14 2.05 1.104 (15)
 1q31 rs2816316 192536813 RGS1 0.82 1.12 1.002 (15)
 1q32 rs3024505 206939904 IL10 0.83 1.19 1.004 (15)
 2p25 rs1534422 12640741 2p25 0.46 1.08 1.001 (15)
 2q12 rs917997 103070568 IL18RAP 0.78 1.20 1.005 (15)
 2q24 rs1990760 163124051 IFIH1 0.60 1.16 1.005 (15)
 2q33 rs3087243 204738919 CTLA4 0.55 1.14 1.004 (15)
 3p21 rs333 46345611 CCR5 0.88 1.18 1.003 (15)
 4p15 rs10517086 26085511 4p15 0.30 1.09 1.002 (15)
 4q27 rs17388568 123132492 IL2 0.26 1.26 1.011 (15)
 5p13 rs6897932 35874575 IL7R 0.73 1.12 1.002 (15)
 6p21 MHC 3.058 (72)
 6q15 rs11755527 90958231 BACH2 0.47 1.13 1.004 (15)
 6q22 rs9388489 126698719 C6orf173 0.45 1.17 1.006 (15)
 6q23 rs6920220 137973068 TNFAIP3 0.22 1.09 1.001 (15)
 6q25 rs1738074 159465977 TAGAP 0.56 1.09 1.002 (15)
 7p15 rs7804356 26891665 7p15 0.76 1.14 1.003 (15)
 7p12 rs4948088 51027194 COBL 0.95 1.30 1.002 (15)
 9p24 rs7020673 4291747 GLIS3 0.50 1.14 1.004 (15)
 10p15 rs11594656 6,62015 IL2RA 0.75 1.19 1.005 (15)
 10p15 rs12722495 6137289 IL2RA 0.89 1.59 1.015 (15)
 10p15 rs947474 6430456 PRKCQ 0.81 1.10 1.001 (15)
 10q23 rs10509540 90023033 C10orf59 0.72 1.33 1.015 (15)
 11p15 rs689 2138800 INS 0.71 2.30 1.096 (15)
 12p13 rs4763879 9910164 CD69 0.37 1.09 1.002 (15)
 12q13 rs2292239 56482180 ERBB3 0.34 1.31 1.018 (15)
 12q13 rs1678536 57979190 Multiple 0.72 1.12 1.002 (15)
 12q24 rs3184504 111884608 SH2B3 0.49 1.28 1.015 (15)
 14q24 rs1465788 69263599 14q24 0.71 1.16 1.004 (15)
 14q32 rs4900384 98498951 14q32 0.29 1.09 1.002 (15)
 15q25 rs3825932 79235446 CTSH 0.68 1.16 1.005 (15)
 16p13 rs12708716 11179873 CLEC16A 0.65 1.23 1.009 (15)
 16p12 rs12444268 20342572 16p12 0.30 1.10 1.002 (15)
 16p11 rs4788084 28539848 IL27 0.58 1.16 1.005 (15)
 16q23 rs7202877 75247245 16q23 0.10 1.13 1.001 (15)
 17p13 rs16956936 7633692 17p13 0.87 1.09 1.001 (15)
 17q12 rs2290400 38066240 ORMDL3 0.51 1.15 1.005 (15)
 17q21 rs7221109 38770286 17q21 0.65 1.05 1.001 (15)
 18p11 rs1893217 12809340 PTPN2 0.17 1.13 1.002 (15)
 18q22 rs763361 67531642 CD226 0.47 1.16 1.006 (15)
 19q13 rs425105 47208481 19q13 0.84 1.16 1.003 (15)
 20p13 rs2281808 1610551 20p13 0.64 1.11 1.002 (15)
 21q22 rs11203203 43836186 UBASH3A 0.43 1.13 1.004 (15)
 22q12 rs5753037 30581722 22q12 0.39 1.10 1.002 (15)
 22q13 rs229541 37591318 C1QTNF6 0.43 1.11 1.003 (15)
 Xq28 rs2664170 153945602 Xq28 0.32 1.16 1.005 (15)
Crohn's disease
 1p31 rs11465804 67475114 IL23R 0.93 2.50 1.025 (14)
 1p13 rs2476601 114179091 PTPN22 0.90 1.31 1.005 (14)
 1q23 rs2274910 159118670 ITLN1 0.68 1.14 1.004 (14)
 1q24 rs9286879 171128857 1q24 0.24 1.19 1.006 (14)
 1q32 rs11584383 199202489 1q32 0.70 1.18 1.005 (14)
 2q27 rs3828309 233845149 ATG16L1 0.53 1.28 1.015 (14)
 3p21 rs3197999 49696536 MST1 0.27 1.20 1.007 (14)
 5p13 rs4613763 40428485 PTGER4 0.13 1.32 1.010 (14)
 5q31 rs2188962 131798704 5q31 0.43 1.25 1.013 (14)
 5q33 rs11747270 150239060 IRGM 0.09 1.33 1.008 (14)
 5q33 rs10045431 158747111 IL12B 0.71 1.11 1.002 (14)
 6p22 rs6908425 20836710 CDKAL1 0.78 1.21 1.006 (14)
 6q21 rs7746082 106541962 6q21 0.29 1.17 1.005 (14)
 6q27 rs2301436 167357978 CCR6 0.46 1.21 1.009 (14)
 7p12 rs1456893 50240218 7p12 0.68 1.20 1.007 (14)
 8q24 rs1551398 126609233 8q24 0.62 1.08 1.001 (14)
 9p24 rs10758669 4971602 JAK2 0.35 1.12 1.003 (14)
 9q32 rs4263839 116606261 TNFSF15 0.68 1.22 1.008 (14)
 10p11 rs17582416 35327656 10p11 0.35 1.16 1.005 (14)
 10q21 rs10995271 64108492 ZNF365 0.39 1.25 1.012 (14)
 10q24 rs11190140 101281583 NKX2-3 0.48 1.20 1.008 (14)
 11q13 rs7927894 75978964 C11orf30 0.39 1.16 1.005 (14)
 12q12 rs11175593 38888207 LRRK2, MUC19 0.02 1.54 1.005 (14)
 13q14 rs3764147 43355925 13q14 0.22 1.25 1.010 (14)
 16q12 rs2066847 49321280 NOD2 0.02 3.99 1.147 (14)
 17q21 rs2872507 35294289 ORMDL3 0.47 1.12 1.003 (14)
 17q21 rs744166 37767727 STAT3 0.57 1.18 1.007 (14)
 18p11 rs2542151 12769947 PTPN2 0.15 1.35 1.014 (14)
 21q21 rs1736135 15727091 21q21 0.57 1.18 1.007 (14)
 21q22 rs762421 44439989 ICOSLG 0.39 1.13 1.004 (14)
Type 2 diabetes
 1p13–p11 rs10923931 120319482 NOTCH2 0.11 1.09 1.001 (73)
 1q32 rs340874 212225879 PROX1 0.56 1.07 1.001 (18)
 2p23 rs780094 27594741 GCKR 0.61 1.06 1.001 (18)
 2p21 rs7578597 43586327 THADA 0.90 1.15 1.002 (73)
 2p16 rs243021 60438323 BCL11A 0.46 1.08 1.001 (74)
 2q26 rs7578326 226728897 IRS1 0.64 1.11 1.002 (74)
 3p25 rs1801282 12368125 PPARG 0.85 1.23 1.005 (73)
 3p14 rs4607103 64686944 ADAMTS9 0.76 1.10 1.002 (73)
 3q13–q21 rs11708067 124548468 ADCY5 0.77 1.12 1.002 (18)
 3q27 rs4402960 186994381 IGF2BP2 0.31 1.11 1.002 (73)
 4p16 rs10010131 6343816 WFS1 0.59 1.14 1.004 (73)
 5q13 rs4457053 76460705 ZBED3 0.26 1.08 1.001 (74)
 6p22 rs10946398 20769013 CDKAL1 0.33 1.09 1.002 (73)
 7p21 rs2191349 15030834 DGKB/TMEM195 0.47 1.06 1.001 (18)
 7p15 rs864745 28147081 JAZF1 0.50 1.08 1.001 (73)
 7p15 rs4607517 44202193 GCK 0.2 1.07 1.001 (18)
 7q32 rs972283 130117394 KLF14 0.55 1.07 1.001 (74)
 8q22 rs896854 96029687 TP53INP1 0.48 1.06 1.001 (74)
 8q24 rs13266634 118253964 SLC30A8 0.68 1.12 1.003 (73)
 9p21 rs10811661 22124094 CDKN2A/B 0.84 1.17 1.003 (73)
 9q21 rs13292136 81141948 CHCHD9 0.93 1.11 1.001 (74)
 10p13 rs12779790 12368016 CDC123/CAMK1D 0.18 1.11 1.002 (73)
 10q23 rs5015480 94455539 HHEX/IDE 0.59 1.10 1.002 (73)
 11p15 rs2334499 1653428 DUSP8 0.41 1.08 1.001 (32)
 11p15 rs231362 2648047 KCNQ1 0.52 1.08 1.001 (74)
 11p15 rs2237892 2796327 KCNQ1 0.34 1.42 1.031 (73)
 11p15 rs5219 17366148 KCNJ11 0.39 1.15 1.005 (73)
 11q13 rs1552224 72110746 CENTD2 0.88 1.14 1.002 (74)
 11q21 rs10830963 92348358 MTNR1B 0.30 1.09 1.001 (73)
 12q14 rs1531343 64461161 HMGA2 0.1 1.1 1.001 (74)
 12q14–q21 rs7961581 69949369 TSPAN8/LGR5 0.27 1.06 1.001 (73)
 12q24 rs7957197 119945069 HNF1A 0.85 1.07 1.001 (74)
 15q25 rs11634397 78219277 ZFAND6 0.6 1.06 1.001 (74)
 15q26 rs8042680 89322341 PRC1 0.22 1.07 1.001 (74)
 16q12 rs8050136 52373776 FTO 0.38 1.21 1.009 (73)
 17cen–q21.3 rs757210 33170628 HNF1B (TCF2) 0.38 1.10 1.002 (73)
 Xq28 rs5945326 152553116 DUSP9 0.21 1.27 1.011 (74)

RA, rheumatoid arthritis; T1D, type 1 diabetes; CD, Crohn's disease; T2D, type 2 diabetes; RAF, risk allele frequency in controls; OR, odds ratio.

Sibling recurrence risk ratio (λs) was calculated using the formula:
graphic file with name ddq368ueq1.jpg

where q is the risk allele frequency, p = 1 − q, and γ is the genotype relative risk under the additive model.

POSSIBLE CONTRIBUTORS TO THE UNEXPLAINED HERITABILITY

Explaining this ‘missing heritability' of complex diseases (1113) is an area of active research, and there are likely to be multiple contributing factors. Part of the explanation is likely to be an underestimate of the contribution made by the types of variants targeted by GWAS. For instance, it might be that there are large numbers of variants of very small effect, which early GWAS were underpowered to detect, yet to be found. This idea is supported by the observation that meta-analyses of published GWAS are discovering a substantial number of new susceptibility loci (1425). In addition, for most loci, causal variants and potential independent additional markers within the region have not been identified yet. New ways of analysing the genetic architecture of complex traits using GWAS data are suggesting that indeed a large proportion of heritability can be explained by common variants and that larger GWAS will yield many more validated loci for complex traits (26,27).

Of course, GWAS only interrogate a portion of the types of variation that could underlie disease risk. Analysis of GWAS data has been mainly focused on single nucleotide polymorphisms (SNPs), but there are other types of genetic variation, such as structural variants, that have not been studied in depth. However, recent studies of common (MAF > 5%) copy number variants (CNVs) have shown that they seem unlikely to account for a substantial proportion of the ‘missing heritability’ (28). Similarly, the analysis of gene–environment and gene–gene interactions (epistasis) might improve the fraction of heritability explained by loci documented thus far. Several epistatic interactions have been indentified in humans [e.g. between the RET protooncogene and endothelin receptor type B genes in Hirschsprung disease (29), the interleukin 4 receptor variants and interleukin 13 promoter variants in asthma (30) and the alpha- and beta-adrenergic receptors in congestive heart failure (31)], although they have not been replicated. However, this phenomenon has not been thoroughly explored through large-scale analysis of genome-wide SNP interactions, first due to the fact that current sample sizes are underpowered to detect modest interaction effects and secondly due to the paucity of sample collections with genetic and detailed environmental exposure data. Complex patterns of inheritance, such as parent of origin effects (32), as well as inherited epigenetic modifications of the genome, the presence of phenotype heterogeneity in the cohorts used in the first wave of GWAS, or even an initial over-estimation of the heritability of complex traits (33) can also contribute to the missing heritability.

While the above-mentioned plausible contributors seem unlikely to play a substantial role in explaining missing heritability, rare variants are increasingly thought to account for a large proportion of it (3436). Contrary to the CDCV hypothesis, the multiple rare variant (MRV) hypothesis argues that the summation of the effects of low-frequency polymorphisms, each conferring an intermediate increase in risk (i.e. incompletely penetrant, but greater than those observed for common variants), can explain a significant proportion of the genetic susceptibility to common diseases and traits. Some studies analysing rare variants using GWAS data have been carried out, but these have proven to be underpowered to detect robust associations. Re-sequencing approaches are more suitable for rare variant analysis, and, as these are becoming more cost-effective and new analysis methods are being developed (37,38), they will soon be applied to large-scale studies of rare variants. Indeed, several targeted sequencing studies have already proven successful for the identification of associations between rare variants and some human diseases and disease-related phenotypes (3943). The same argument can also be extended to other forms of genetic variation, and it has been recently proposed that rare CNVs may be responsible for some fraction of the missing heritability of complex traits (44,45).

SYNTHETIC ASSOCIATIONS HYPOTHESIS

It has been recently proposed that GWAS signals that have been credited to common variants could instead reflect the effect of MRVs. Dickson et al. (46) argue that rare variants can create ‘synthetic association' signals in GWAS, by occurring more often in association with one of the alleles of a common tag SNP (Fig. 1), which would thus synthetically confer an increased risk for disease. This might also mean that the causal variants could be megabases away from the common variants detected in GWAS, and that the real effect size could be much stronger than that implied by the common tag SNP. If true, the synthetic association hypothesis would suggest that follow-up studies from GWAS hits should encompass a much larger region than the linkage disequilibrium region surrounding the detected common variant (6).

Figure 1.

Figure 1.

Simplified view of genetic variation at the NOD2 locus, a well-documented example of a synthetic association. The left-hand side shows a genealogical tree representing six SNPs in this region after discarding rare recombinant events. The right-hand side shows the resulting haplotypes and their population frequencies (48), with coloured circles representing common GWAS SNPs, and starbursts representing previously identified low-frequency coding variants responsible for association between NOD2 and CD. While none of the GWAS SNPs is strongly correlated with any individual causal allele, the three coding variants create a synthetic association because they cluster by chance on the side of the tree marked by the green GWAS SNP (rs2076756).

There are very few documented examples showing that MRVs may be responsible for a common variant GWAS signal (47). It therefore seems sensible to evaluate this hypothesis in the broader context of human disease genetics, including historical study designs, functional annotations of GWAS regions and experiments in human populations with diverse ancestry. While sequencing experiments currently underway or in planning will ultimately resolve the role of synthetic association, the balance of evidence available today is already illuminating.

LINKAGE EVIDENCE SUGGESTS SYNTHETIC ASSOCIATIONS ARE RARE

One line of evidence that suggests that synthetic associations do not underlie many reported GWAS associations is provided by linkage scans that have been conducted in the past. The genetic model that underpins synthetic association (allelic heterogeneity caused by several low-frequency variants with larger effects than commonly seen in GWAS) is highly tractable by linkage analysis, which combines information from all causal variants at a particular locus. This relationship is highlighted by the widely replicated linkage between the NOD2 gene and CD, which is driven by three independent, low-frequency causal variants (4850) which cause a synthetic association signal in GWAS of CD (Fig. 1). NOD2 is the exception that proves the rule that, despite many attempts, very few replicable linkages to complex diseases have been discovered (51). This dearth of findings is informative when considering the likelihood of synthetic associations because it rules out a class of genetic models from playing a substantial role in complex disease.

Power calculations comparing a large-scale linkage scan (52) with the largest GWAS considered by Dickson et al. (46) show that only a small fraction of the genetic models which can give rise to synthetic associations would not be detected by linkage. Furthermore, the scenario where synthetic associations could have escaped linkage comprises models with a small number of causal variants with genotype relative risk <2.5 (53). While these observations do not entirely rule out synthetic associations, they seriously confine the parameter space in which they might exist. In addition, comparisons of even modest linkage signals with GWAS regions have shown only a few overlaps, and even these are largely driven by atypically large effects like the MHC in autoimmunity. In addition, attempts to explicitly use linkage information to boost the power of GWAS (54) have not been successful. This contrast between largely overlapping genetic models that linkage and synthetic association are well powered to detect and almost completely non-overlapping results from linkage and GWAS strongly suggests that synthetic associations do not underlie many GWAS signals.

PATHWAY ANALYSES IMPLY GWAS ARE POINTING TO KEY FUNCTIONAL ELEMENTS

Another prediction made by the synthetic association hypothesis is that the most significantly associated common variant identified by GWAS might be located several megabases away from the underlying low-frequency functional variants. The empirical properties of linkage disequilibrium between low-frequency and common variants are not fully understood, although the complete 1000 Genomes project (http://www.1000genomes.org/) will soon provide information necessary to evaluate this question directly. Nevertheless, two indirect pieces of evidence suggest that most GWAS hit SNPs are within a few hundred kilobases (and many within tens of kilobases) of their tagged functional alleles. First, a large number of GWAS signals across a variety of traits are nearby to genes previously established to cause Mendelian forms of the same trait (55). Secondly, genes involved in key pathways repeatedly arise in GWAS of some diseases. For example, 8 of 10 proteins involved in the Th17-differentiation signalling pathway have been associated with one or more auto-inflammatory diseases (56). As with many aspects relating to the evaluation of the prevalence of synthetic associations, deeper sequence data sets will be needed to fully answer the question of the distance between GWAS tag SNPs and causal variants, but these early patterns imply that the tag SNP often resides in the proximity of the relevant functional genomic element.

TRANS-ETHNIC ASSOCIATIONS ARE WIDESPREAD

Under the synthetic associations model, common variant signals reflecting single or multiple rare alleles are unlikely to be consistent across populations of different ancestry. This is based on the fact that many of these rare variants would have arisen recently and will therefore not be shared across diverged populations. The majority of GWAS to date have focused on populations of European descent. However, data on more diverse populations are now starting to arise. For example, a study from early 2010 clearly demonstrated that common variant signals for T2D are reproducible and have similar effect sizes across East Asian populations including Chinese, Malays and Asian-Indians in Singapore (57). In fact, T2D-associated variants have been found to be associated with disease in diverse populations (ranging from African-Americans to Chinese) by several studies (5862). Similarly, in RA, the STAT4 locus, as an example, has shown reproducible association with disease in the USA (63), UK (64), Spanish, Swedish, Dutch (65), Korean (66), Colombian (67), Japanese (68) and Greek (69) populations.

FUTURE DIRECTIONS FOR GWAS AND THE SEARCH FOR GENETIC CAUSES OF COMMON DISEASE

Although synthetic associations explaining common GWAS signals for complex polygenic traits are certainly plausible and can occur under specific circumstances (e.g. NOD2 in CD), results from studies thus far suggest that these scenarios are actually a rarity. The idea that MRVs at a particular locus may be associated with complex traits of interest has been around for over a decade. We are now starting to accrue a growing body of empirical evidence in support of this hypothesis. The field of complex trait genetics has over the last few months engaged in discussions on the controversial topic of synthetic associations, but it transpires that there is little evidence to support this as a widespread scenario.

Empowered by advances in sequencing technologies, attention is currently shifting towards the comprehensive study of low-frequency and rare variants. Resources such as the 1000 genomes project and emerging large-scale studies like the UK10k project will undoubtedly facilitate the examination of variants at this end of the allele frequency spectrum. In parallel, improved strategies for accurate imputation and powerful analysis of low-frequency and rare variants in aggregate are being further developed and fine-tuned to the needs of these next generation truly genome-wide scans for association.

Conflict of Interest statement. None declared.

FUNDING

G.O. is funded by the European Union (Marie Curie IEF Fellowship PIEF-GA-2009-235662). E.Z. and J.C.B. are supported by the Wellcome Trust (WT088885/Z/09/Z, WT089120/Z/09/Z). Funding to pay the Open Access Charge was provided by The Wellcome Trust.

REFERENCES

  • 1.Hindorff L.A., Junkins H.A., Hall P.N., Mehta J.P., Manolio T.A. A Catalog of Published Genome-Wide Association Studies. 2010 Available at: www.genome.gov/gwastudies . [Google Scholar]
  • 2.Risch N., Merikangas K. The future of genetic studies of complex human diseases. Science. 1996;273:1516–1517. doi: 10.1126/science.273.5281.1516. doi:10.1126/science.273.5281.1516. [DOI] [PubMed] [Google Scholar]
  • 3.Hardy J., Singleton A. Genomewide association studies and human disease. N. Engl. J. Med. 2009;360:1759–1768. doi: 10.1056/NEJMra0808700. doi:10.1056/NEJMra0808700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Reich D.E., Lander E.S. On the allelic spectrum of human disease. Trends Genet. 2001;17:502–510. doi: 10.1016/s0168-9525(01)02410-6. doi:10.1016/S0168-9525(01)02410-6. [DOI] [PubMed] [Google Scholar]
  • 5.Frazer K.A., Murray S.S., Schork N.J., Topol E.J. Human genetic variation and its contribution to complex traits. Nat. Rev. Genet. 2009;10:241–251. doi: 10.1038/nrg2554. doi:10.1038/nrg2554. [DOI] [PubMed] [Google Scholar]
  • 6.Cirulli E.T., Goldstein D.B. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat. Rev. Genet. 2010;11:415–425. doi: 10.1038/nrg2779. doi:10.1038/nrg2779. [DOI] [PubMed] [Google Scholar]
  • 7.Wordsworth P., Bell J. Polygenic susceptibility in rheumatoid arthritis. Ann. Rheum. Dis. 1991;50:343–346. doi: 10.1136/ard.50.6.343. doi:10.1136/ard.50.6.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Hyttinen V., Kaprio J., Kinnunen L., Koskenvuo M., Tuomilehto J. Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study. Diabetes. 2003;52:1052–1055. doi: 10.2337/diabetes.52.4.1052. doi:10.2337/diabetes.52.4.1052. [DOI] [PubMed] [Google Scholar]
  • 9.Tysk C., Lindberg E., Jarnerot G., Floderus-Myrhed B. Ulcerative colitis and Crohn's disease in an unselected population of monozygotic and dizygotic twins. A study of heritability and the influence of smoking. Gut. 1988;29:990–996. doi: 10.1136/gut.29.7.990. doi:10.1136/gut.29.7.990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Kobberling J., Tattersall R. The Genetics of Diabetes Mellitus. London: Academic Press; 1982. [Google Scholar]
  • 11.Manolio T.A., Collins F.S., Cox N.J., Goldstein D.B., Hindorff L.A., Hunter D.J., McCarthy M.I., Ramos E.M., Cardon L.R., Chakravarti A., et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–753. doi: 10.1038/nature08494. doi:10.1038/nature08494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Maher B. Personal genomes: the case of the missing heritability. Nature. 2008;456:18–21. doi: 10.1038/456018a. doi:10.1038/456018a. [DOI] [PubMed] [Google Scholar]
  • 13.Eichler E.E., Flint J., Gibson G., Kong A., Leal S.M., Moore J.H., Nadeau J.H. Missing heritability and strategies for finding the underlying causes of complex disease. Nat. Rev. Genet. 2010;11:446–450. doi: 10.1038/nrg2809. doi:10.1038/nrg2809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Barrett J.C., Hansoul S., Nicolae D.L., Cho J.H., Duerr R.H., Rioux J.D., Brant S.R., Silverberg M.S., Taylor K.D., Barmada M.M., et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat. Genet. 2008;40:955–962. doi: 10.1038/NG.175. doi:10.1038/ng.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Barrett J.C., Clayton D.G., Concannon P., Akolkar B., Cooper J.D., Erlich H.A., Julier C., Morahan G., Nerup J., Nierras C., et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat. Genet. 2009;41:703–707. doi: 10.1038/ng.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Stahl E.A., Raychaudhuri S., Remmers E.F., Xie G., Eyre S., Thomson B.P., Li Y., Kurreeman F.A., Zhernakova A., Hinks A., et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat. Genet. 2010;40:955–962. doi: 10.1038/ng.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Zeggini E., Scott L.J., Saxena R., Voight B.F., Marchini J.L., Hu T., de Bakker P.I., Abecasis G.R., Almgren P., Andersen G., et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat. Genet. 2008;40:638–645. doi: 10.1038/ng.120. doi:10.1038/ng.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Dupuis J., Langenberg C., Prokopenko I., Saxena R., Soranzo N., Jackson A.U., Wheeler E., Glazer N.L., Bouatia-Naji N., Gloyn A.L., et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 2010;42:105–116. doi: 10.1038/ng.520. doi:10.1038/ng.520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat. Genet. 2010;42:441–447. doi: 10.1038/ng.571. Tobacco and Genetics Consortium doi:10.1038/ng.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Hancock D.B., Eijgelsheim M., Wilk J.B., Gharib S.A., Loehr L.R., Marciante K.D., Franceschini N., van Durme Y.M., Chen T.H., Barr R.G., et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat. Genet. 2010;42:45–52. doi: 10.1038/ng.500. doi:10.1038/ng.500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Kottgen A., Pattaro C., Boger C.A., Fuchsberger C., Olden M., Glazer N.L., Parsa A., Gao X., Yang Q., Smith A.V., et al. New loci associated with kidney function and chronic kidney disease. Nat. Genet. 2010;42:376–384. doi: 10.1038/ng.568. doi:10.1038/ng.568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.McGovern D.P., Gardet A., Torkvist L., Goyette P., Essers J., Taylor K.D., Neale B.M., Ong R.T., Lagace C., Li C., et al. Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nat. Genet. 2010;42:332–337. doi: 10.1038/ng.549. doi:10.1038/ng.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.McMahon F.J., Akula N., Schulze T.G., Muglia P., Tozzi F., tera-Wadleigh S.D., Steele C.J., Breuer R., Strohmaier J., Wendland J.R., et al. Meta-analysis of genome-wide association data identifies a risk locus for major mood disorders on 3p21.1. Nat. Genet. 2010;42:128–131. doi: 10.1038/ng.523. doi:10.1038/ng.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Soranzo N., Spector T.D., Mangino M., Kuhnel B., Rendon A., Teumer A., Willenborg C., Wright B., Chen L., Li M., et al. A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat. Genet. 2009;41:1182–1190. doi: 10.1038/ng.467. doi:10.1038/ng.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Wang T.J., Zhang F., Richards J.B., Kestenbaum B., van Meurs J.B., Berry D., Kiel D.P., Streeten E.A., Ohlsson C., Koller D.L., et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet. 2010;376:180–188. doi: 10.1016/S0140-6736(10)60588-0. doi:10.1016/S0140-6736(10)60588-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Park J.H., Wacholder S., Gail M.H., Peters U., Jacobs K.B., Chanock S.J., Chatterjee N. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat. Genet. 2010;42:570–575. doi: 10.1038/ng.610. doi:10.1038/ng.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Yang J., Benyamin B., McEvoy B.P., Gordon S., Henders A.K., Nyholt D.R., Madden P.A., Heath A.C., Martin N.G., Montgomery G.W., et al. Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 2010;42:565–569. doi: 10.1038/ng.608. doi:10.1038/ng.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Craddock N., Hurles M.E., Cardin N., Pearson R.D., Plagnol V., Robson S., Vukcevic D., Barnes C., Conrad D.F., Giannoulatou E., et al. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature. 2010;464:713–720. doi: 10.1038/nature08979. doi:10.1038/nature08979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Carrasquillo M.M., McCallion A.S., Puffenberger E.G., Kashuk C.S., Nouri N., Chakravarti A. Genome-wide association study and mouse model identify interaction between RET and EDNRB pathways in Hirschsprung disease. Nat. Genet. 2002;32:237–244. doi: 10.1038/ng998. doi:10.1038/ng998. [DOI] [PubMed] [Google Scholar]
  • 30.Howard T.D., Koppelman G.H., Xu J., Zheng S.L., Postma D.S., Meyers D.A., Bleecker E.R. Gene–gene interaction in asthma: IL4RA and IL13 in a Dutch population with asthma. Am. J. Hum. Genet. 2002;70:230–236. doi: 10.1086/338242. doi:10.1086/338242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Smal K.M., Wagoner L.E., Levin A.M., Kardia S.L., Liggett S.B. Synergistic polymorphisms of beta1- and alpha2C-adrenergic receptors and the risk of congestive heart failure. N. Engl. J. Med. 2002;347:1135–1142. doi: 10.1056/NEJMoa020803. doi:10.1056/NEJMoa020803. [DOI] [PubMed] [Google Scholar]
  • 32.Kong A., Steinthorsdottir V., Masson G., Thorleifsson G., Sulem P., Besenbacher S., Jonasdottir A., Sigurdsson A., Kristinsson K.T., Jonasdottir A., et al. Parental origin of sequence variants associated with complex diseases. Nature. 2009;462:868–874. doi: 10.1038/nature08625. doi:10.1038/nature08625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Clarke A.J., Cooper D.N. GWAS: heritability missing in action? Eur. J. Hum. Genet. 2010;18:859–861. doi: 10.1038/ejhg.2010.35. doi:10.1038/ejhg.2010.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Pritchard J.K. Are rare variants responsible for susceptibility to complex diseases? Am. J. Hum. Genet. 2001;69:124–137. doi: 10.1086/321272. doi:10.1086/321272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Bodmer W., Bonilla C. Common and rare variants in multifactorial susceptibility to common diseases. Nat. Genet. 2008;40:695–701. doi: 10.1038/ng.f.136. doi:10.1038/ng.f.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Schork N.J., Murray S.S., Frazer K.A., Topol E.J. Common vs. rare allele hypotheses for complex diseases. Curr. Opin. Genet. Dev. 2009;19:212–219. doi: 10.1016/j.gde.2009.04.010. doi:10.1016/j.gde.2009.04.010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Li B., Leal S.M. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am. J. Hum. Genet. 2008;83:311–321. doi: 10.1016/j.ajhg.2008.06.024. doi:10.1016/j.ajhg.2008.06.024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Morris A.P., Zeggini E. An evaluation of statistical approaches to rare variant analysis in genetic association studies. Genet. Epidemiol. 2010;34:188–193. doi: 10.1002/gepi.20450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Ahituv N., Kavaslar N., Schackwitz W., Ustaszewska A., Martin J., Hebert S., Doelle H., Ersoy B., Kryukov G., Schmidt S., et al. Medical sequencing at the extremes of human body mass. Am. J. Hum. Genet. 2007;80:779–791. doi: 10.1086/513471. doi:10.1086/513471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Cohen J.C., Boerwinkle E., Mosley T.H., Jr, Hobbs H.H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 2006;354:1264–1272. doi: 10.1056/NEJMoa054013. doi:10.1056/NEJMoa054013. [DOI] [PubMed] [Google Scholar]
  • 41.Ji W., Fo J.N., O'Roak B.J., Zhao H., Larson M.G., Simon D.B., Newton-Cheh C., State M.W., Levy D., Lifton R.P. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat. Genet. 2008;40:592–599. doi: 10.1038/ng.118. doi:10.1038/ng.118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Nejentsev S., Walker N., Riches D., Egholm M., Todd J.A. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science. 2009;324:387–389. doi: 10.1126/science.1167728. doi:10.1126/science.1167728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Romeo S., Pennacchio L.A., Fu Y., Boerwinkle E., Tybjaerg-Hansen A., Hobbs H.H., Cohen J.C. Population-based resequencing of ANGPTL4 uncovers variations that reduce triglycerides and increase HDL. Nat. Genet. 2007;39:513–516. doi: 10.1038/ng1984. doi:10.1038/ng1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Walsh T., McClellan J.M., McCarthy S.E., Addington A.M., Pierce S.B., Cooper G.M., Nord A.S., Kusenda M., Malhotra D., Bhandari A., et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science. 2008;320:539–543. doi: 10.1126/science.1155174. doi:10.1126/science.1155174. [DOI] [PubMed] [Google Scholar]
  • 45.Zhang F., Seeman P., Liu P., Weterman M.A., Gonzaga-Jauregui C., Towne C.F., Batish S.D., De Vriendt E., De Jonghe J.P., Rautenstraus B., et al. Mechanisms for nonrecurrent genomic rearrangements associated with CMT1A or HNPP: rare CNVs as a cause for missing heritability. Am. J. Hum. Genet. 2010;86:892–903. doi: 10.1016/j.ajhg.2010.05.001. doi:10.1016/j.ajhg.2010.05.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46.Dickson S.P., Wang K., Krantz I., Hakonarson H., Goldstein D.B. Rare variants create synthetic genome-wide associations. PLoS Biol. 2010;8:e1000294. doi: 10.1371/journal.pbio.1000294. doi:10.1371/journal.pbio.1000294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Wang K., Dickson S.P., Stolle C.A., Krantz I.D., Goldstein D.B., Hakonarson H. Interpretation of association signals and identification of causal variants from genome-wide association studies. Am. J. Hum. Genet. 2010;86:730–742. doi: 10.1016/j.ajhg.2010.04.003. doi:10.1016/j.ajhg.2010.04.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–678. doi: 10.1038/nature05911. doi:10.1038/nature05911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Hugot J.P., Chamaillard M., Zouali H., Lesage S., Cezard J.P., Belaiche J., Almer S., Tysk C., O'Morain C.A., Gassul M., et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature. 2001;411:599–603. doi: 10.1038/35079107. doi:10.1038/35079107. [DOI] [PubMed] [Google Scholar]
  • 50.Ogura Y., Bonen D.K., Inohara N., Nicolae D.L., Chen F.F., Ramos R., Britton H., Moran T., Karaliuskas R., Duer R.H., et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature. 2001;411:603–606. doi: 10.1038/35079114. doi:10.1038/35079114. [DOI] [PubMed] [Google Scholar]
  • 51.McCarthy M.I. Susceptibility gene discovery for common metabolic and endocrine traits. J. Mol. Endocrinol. 2002;28:1–17. doi: 10.1677/jme.0.0280001. doi:10.1677/jme.0.0280001. [DOI] [PubMed] [Google Scholar]
  • 52.Concannon P., Chen W.M., Julier C., Morahan G., Akolkar B., Erlich H.A., Hilner J.E., Nerup J., Nierras C., Pociot F., et al. Genome-wide scan for linkage to type 1 diabetes in 2,496 multiplex families from the Type 1 Diabetes Genetics Consortium. Diabetes. 2009;58:1018–1022. doi: 10.2337/db08-1551. doi:10.2337/db08-1551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Anderson C., Barrett J., Soranzo N., Zeggini E. Synthetic associations are unlikely to account for many common disease genome-wide association signals. PLoS Biol. 2010 doi: 10.1371/journal.pbio.1000580. in press. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Yo Y.J., Bul S.B., Paterson A.D., Waggot D., Sun L. Were genome-wide linkage studies a waste of time? Exploiting candidate regions within genome-wide association studies. Genet. Epidemiol. 2010;34:107–118. doi: 10.1002/gepi.20438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.O'Rahilly S. Human genetics illuminates the paths to metabolic disease. Nature. 2009;462:307–314. doi: 10.1038/nature08532. doi:10.1038/nature08532. [DOI] [PubMed] [Google Scholar]
  • 56.Zhernakova A., van Diemen C.C., Wijmenga C. Detecting shared pathogenesis from the shared genetics of immune-related diseases. Nat. Rev. Genet. 2009;10:43–55. doi: 10.1038/nrg2489. doi:10.1038/nrg2489. [DOI] [PubMed] [Google Scholar]
  • 57.Tan J.T., Ng D.P., Nurbaya S., Ye S., Lim X.L., Leong H., Seet L.T., Siew W.F., Kon W., Wong T.Y., et al. Polymorphisms identified through genome-wide association studies and their associations with type 2 diabetes in Chinese, Malays, and Asian-Indians in Singapore. J. Clin. Endocrinol. Metab. 2010;95:390–397. doi: 10.1210/jc.2009-0688. doi:10.1210/jc.2009-0688. [DOI] [PubMed] [Google Scholar]
  • 58.Han X., Luo Y., Ren Q., Zhang X., Wang F., Sun X., Zhou X., Ji L. Implication of genetic variants near SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, FTO, TCF2, KCNQ1, and WFS1 in type 2 diabetes in a Chinese population. BMC Med. Genet. 2010;11:81. doi: 10.1186/1471-2350-11-81. doi:10.1186/1471-2350-11-81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Lin Y., Li P., Cai L., Zhang B., Tang X., Zhang X., Li Y., Xian Y., Yang Y., Wang L., et al. Association study of genetic variants in eight genes/loci with type 2 diabetes in a Han Chinese population. BMC Med. Genet. 2010;11:97. doi: 10.1186/1471-2350-11-97. doi:10.1186/1471-2350-11-97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 60.Takeuchi F., Serizawa M., Yamamoto K., Fujisawa T., Nakashima E., Ohnaka K., Ikegami H., Sugiyama T., Katsuya T., Miyagishi M., et al. Confirmation of multiple risk Loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population. Diabetes. 2009;58:1690–1699. doi: 10.2337/db08-1494. doi:10.2337/db08-1494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Yan Y., North K.E., Ballantyne C.M., Brancati F.L., Chambles L.E., Franceschini N., Heis G., Kottgen A., Pankow J.S., Selvin E., et al. Transcription factor 7-like 2 (TCF7L2) polymorphism and context-specific risk of type 2 diabetes in African American and Caucasian adults: the Atherosclerosis Risk in Communities study. Diabetes. 2009;58:285–289. doi: 10.2337/db08-0569. doi:10.2337/db08-0569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Zhou D., Zhang D., Liu Y., Zhao T., Chen Z., Liu Z., Yu L., Zhang Z., Xu H., He L. The E23K variation in the KCNJ11 gene is associated with type 2 diabetes in Chinese and East Asian population. J. Hum. Genet. 2009;54:433–435. doi: 10.1038/jhg.2009.54. doi:10.1038/jhg.2009.54. [DOI] [PubMed] [Google Scholar]
  • 63.Remmers E.F., Plenge R.M., Le A.T., Graham R.R., Hom G., Behrens T.W., de Bakker P.I., Le J.M., Le H.S., Batliwalla F., et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N. Engl. J. Med. 2007;357:977–986. doi: 10.1056/NEJMoa073003. doi:10.1056/NEJMoa073003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Barton A., Thomson W., Ke X., Eyre S., Hinks A., Bowes J., Gibbons L., Plant D., Wilson A.G., Marinou I., et al. Re-evaluation of putative rheumatoid arthritis susceptibility genes in the post-genome wide association study era and hypothesis of a key pathway underlying susceptibility. Hum. Mol. Genet. 2008;17:2274–2279. doi: 10.1093/hmg/ddn128. doi:10.1093/hmg/ddn128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Orozco G., Alizadeh B.Z., Delgado-Vega A.M., Gonzalez-Gay M.A., Balsa A., Pascual-Salcedo D., Fernandez-Gutierrez B., Gonzalez-Escribano M.F., Petersson I.F., van Riel P.L., et al. Association of STAT4 with rheumatoid arthritis: a replication study in three European populations. Arthritis Rheum. 2008;58:1974–1980. doi: 10.1002/art.23549. doi:10.1002/art.23549. [DOI] [PubMed] [Google Scholar]
  • 66.Le H.S., Remmers E.F., Le J.M., Kastner D.L., Bae S.C., Gregersen P.K. Association of STAT4 with rheumatoid arthritis in the Korean population. Mol. Med. 2007;13:455–460. doi: 10.2119/2007-00072.Lee. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Palomino-Morales R.J., Rojas-Villarraga A., Gonzalez C.I., Ramirez G., Anaya J.M., Martin J. STAT4 but not TRAF1/C5 variants influence the risk of developing rheumatoid arthritis and systemic lupus erythematosus in Colombians. Genes Immun. 2008;9:379–382. doi: 10.1038/gene.2008.30. doi:10.1038/gene.2008.30. [DOI] [PubMed] [Google Scholar]
  • 68.Kobayashi S., Ikari K., Kaneko H., Kochi Y., Yamamoto K., Shimane K., Nakamura Y., Toyama Y., Mochizuki T., Tsukahara S., et al. Association of STAT4 with susceptibility to rheumatoid arthritis and systemic lupus erythematosus in the Japanese population. Arthritis Rheum. 2008;58:1940–1946. doi: 10.1002/art.23494. doi:10.1002/art.23494. [DOI] [PubMed] [Google Scholar]
  • 69.Zervou M.I., Sidiropoulos P., Petraki E., Vazgiourakis V., Krasoudaki E., Raptopoulou A., Kritikos H., Choustoulaki E., Boumpas D.T., Goulielmos G.N. Association of a TRAF1 and a STAT4 gene polymorphism with increased risk for rheumatoid arthritis in a genetically homogeneous population. Hum. Immunol. 2008;69:567–571. doi: 10.1016/j.humimm.2008.06.006. doi:10.1016/j.humimm.2008.06.006. [DOI] [PubMed] [Google Scholar]
  • 70.Cornelis F., Faure S., Martinez M., Prud'homme J.F., Fritz P., Dib C., Alves H., Barrera P., de Vries V.N., Balsa A., et al. New susceptibility locus for rheumatoid arthritis suggested by a genome-wide linkage study. Proc. Natl Acad. Sci. USA. 1998;95:10746–10750. doi: 10.1073/pnas.95.18.10746. doi:10.1073/pnas.95.18.10746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Jawaheer D., Seldin M.F., Amos C.I., Chen W.V., Shigeta R., Monteiro J., Kern M., Criswel L.A., Albani S., Nelson J.L., et al. A genomewide screen in multiplex rheumatoid arthritis families suggests genetic overlap with other autoimmune diseases. Am. J. Hum. Genet. 2001;68:927–936. doi: 10.1086/319518. doi:10.1086/319518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Tod J.A., Walker N.M., Cooper J.D., Smyth D.J., Downes K., Plagnol V., Bailey R., Nejentsev S., Field S.F., Payne F., et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat. Genet. 2007;39:857–864. doi: 10.1038/ng2068. doi:10.1038/ng2068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.McCarthy M.I., Zeggini E. Genome-wide association studies in type 2 diabetes. Curr. Diab. Rep. 2009;9:164–171. doi: 10.1007/s11892-009-0027-4. doi:10.1007/s11892-009-0027-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Voight B.F., Scot L.J., Steinthorsdottir V., Morris A.P., Dina C., Welch R.P., Zeggini E., Huth C., Aulchenko Y.S., Thorleifsson G., et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat. Genet. 2010;42:579–589. doi: 10.1038/ng.609. doi:10.1038/ng.609. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Human Molecular Genetics are provided here courtesy of Oxford University Press

RESOURCES