Skip to main content
Neuroscience Bulletin logoLink to Neuroscience Bulletin
. 2010 Apr 8;26(2):163–167. doi: 10.1007/s12264-010-1016-y

Regulation of dopamine D3 receptors by protein-protein interactions

蛋白-蛋白相互作用调节多巴胺受体D3 的功能

Ming-Lei Guo 1, Xian-Yu Liu 1, Li-Min Mao 1, John Q Wang 1,
PMCID: PMC2953790  NIHMSID: NIHMS236953  PMID: 20332822

Abstract

Gαi/o protein-coupled dopamine D3 receptors (D3Rs) are preferentially expressed in the limbic system, including the nucleus accumbens. This situates the receptor well in the regulation of limbic function and in the pathogenesis of various neuropsychiatric and neurodegenerative disorders. The intracellular domains of the receptor, mainly the large third intracellular loop and the intracellular C-terminal tail, interact with multiple submembranous proteins. These interactions are critical for the control of surface expression of the receptor and the efficacy of receptor signaling. Recently, a synapse-enriched protein kinase, Ca2+/calmodulin-dependent protein kinase II (CaMKII), has been found to interact with D3R in the above mentioned interaction model. CaMKII directly binds to the N-terminal of the third loop of D3R. This binding is Ca2+-dependent and is sustained by the autophosphorylation of the kinase. In rat accumbal neurons, the increase in Ca2+ level induces the recruitment of CaMKII to D3R, and CaMKII phosphorylates the receptor at a specific serine site. The CaMKII-induced phosphorylation could inhibit the receptor function and further regulate the behavioral response to the psychostimulant cocaine. These findings reveal a prototypic protein association model between a G protein-coupled receptor and CaMKII. Through the dynamic protein-protein interactions, the abundance, turnover cycle, and function of D3R can be regulated by multiple signals and enzymatic proteins.

Keywords: striatum, caudate, phosphorylation, cocaine, addiction, cAMP, CaMKII

References

  • [1].Neve K.A., Seamans J.K., Trantham-Davidson H. Dopamine receptor signaling. J Recept Signal Transduct Res. 2004;24:165–205. doi: 10.1081/RRS-200029981. [DOI] [PubMed] [Google Scholar]
  • [2].Sokoloff P., Giros B., Martres M.P., Bouthenet M.L., Schwartz J.C. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature. 1990;347:146–151. doi: 10.1038/347146a0. [DOI] [PubMed] [Google Scholar]
  • [3].Bouthenet M.L., Souil E., Martres M.P., Sokoloff P., Giros B., Schwartz J.C. Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor mRNA. Brain Res. 1991;564:203–219. doi: 10.1016/0006-8993(91)91456-B. [DOI] [PubMed] [Google Scholar]
  • [4].Heidbreder C.A., Gardner E.L., Xi Z.X., Thanos P.K., Mugnaini M., Hagan J.J., et al. The role of central dopamine D3 receptors in drug addiction: a review of pharmacological evidence. Brain Res Rev. 2005;49:77–105. doi: 10.1016/j.brainresrev.2004.12.033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [5].Sokoloff P., Diaz J., Le Foll B., Guillin O., Leriche L., Bezard E., et al. The dopamine D3 receptor: a therapeutic target for the treatment of neuorpsychiatric disorders. CNS Neurol Disord Drug Targets. 2006;5:25–43. doi: 10.2174/187152706784111551. [DOI] [PubMed] [Google Scholar]
  • [6].Lin R., Karpa K., Kabbani N., Goldman-Rakic P., Levenson R. Dopamine D2 and D3 receptors are linked to the actin cytoskeleton via interaction with filamin A. Proc Natl Acad Sci U S A. 2001;98:5258–5263. doi: 10.1073/pnas.011538198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [7].Gorlin J.B., Yamin R., Egan S., Stewart M., Stossel T.P., Kwiatkowski D., et al. Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring. J Cell Biol. 1990;111:1089–1105. doi: 10.1083/jcb.111.3.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [8].Binda A.V., Kabbani N., Lin R., Levenson R. D2 and D3 dopamine receptor cell surface localization mediated by interaction with protein 4.1N. Mol Pharmacol. 2002;62:507–513. doi: 10.1124/mol.62.3.507. [DOI] [PubMed] [Google Scholar]
  • [9].Walensky L.D., Blackshaw S., Laio D., Watkins C.C., Weier H.U., Parra M., et al. A novel neuron-enriched homolog of the erythrocyte membrane cytoskeletal protein 4.1. J Neurosci. 1999;19:6457–6467. doi: 10.1523/JNEUROSCI.19-15-06457.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [10].Kutzleb C., Sanders G., Yamamoto R., Wang X., Lichte B., Petrasch-Parwez E., et al. Paralemmin, a prenyl-palmitoyl-anchored phosphoprotein abundant in neurons and implicated in plasma membrane dynamics and cell process formation. J Cell Biol. 1998;143:795–813. doi: 10.1083/jcb.143.3.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [11].Basile M., Lin R., Kabbani N., Karpa K., Kilimann M., Simpson I., et al. Paralemmin interacts with D3 dopamine receptors: implications for membrane localization and cAMP signaling. Arch Biochem Biophy. 2006;446:60–68. doi: 10.1016/j.abb.2005.10.027. [DOI] [PubMed] [Google Scholar]
  • [12].Griffon N., Jeanneteau F., Prieur F., Diaz J., Sokoloff P. CLIC6, a member of the intracellular chloride channel family, interacts with dopamine D2-like receptors. Mol Brain Res. 2003;117:47–57. doi: 10.1016/S0169-328X(03)00283-3. [DOI] [PubMed] [Google Scholar]
  • [13].Jeanneteau F., Diaz J., Sokoloff P., Griffon N. Interactions of GIPC with dopamine D2, D3 but not D4 receptors define a novel mode of regulation of G protein-coupled receptors. Mol Biol Cell. 2004;15:696–705. doi: 10.1091/mbc.E03-05-0293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [14].Fiorentini C., Busi C., Spano P., Missale C. Dimerization of dopamine D1 and D3 receptors in the regulation of striatal function. Curr Opin Pharmacol. 2009;10:1–6. doi: 10.1016/j.coph.2009.09.008. [DOI] [PubMed] [Google Scholar]
  • [15].Villar V.A., Jones J.E., Armando I., Palmes-Saloma C., Yu P., Pascua A.M., et al. G protein-coupled receptor kinase 4 (GRK4) regulates the phosphorylation and function of the dopamine D3 receptor. J Biol Chem. 2009;284:21425–21434. doi: 10.1074/jbc.M109.003665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [16].Liu X.Y., Mao L.M., Zhang G.C., Papasian C.J., Fibuch E.E., Lan H.X., et al. Activity-dependent modulation of limbic dopamine D3 receptors by CaMKII. Neuron. 2009;61:425–438. doi: 10.1016/j.neuron.2008.12.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [17].Hudmon A., Schulman H. Neuronal Ca2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem. 2002;71:473–510. doi: 10.1146/annurev.biochem.71.110601.135410. [DOI] [PubMed] [Google Scholar]
  • [18].White R.R., Kwon Y.G., Taing M., Lawrence D.S., Edelman A.M. Definition of optimal substrate recognition motifs of Ca2+-calmodulin-dependent protein kinases IV and II reveals shared and distinctive features. J Biol Chem. 1998;273:3166–3179. doi: 10.1074/jbc.273.6.3166. [DOI] [PubMed] [Google Scholar]
  • [19].Xu M., Koeltzow T.E., Santiago G.T., Moratalla R., Cooper D.C., Hu X.T., et al. Dopamine D3 receptor mutant mice exhibit increased behavioral sensitivity to concurrent stimulation of D1 and D2 receptors. Neuron. 1997;19:837–848. doi: 10.1016/S0896-6273(00)80965-4. [DOI] [PubMed] [Google Scholar]
  • [20].Sokoloff P., Martres M.P., Giros B., Bouthenet M.L., Schwartz J.C. The third dopamine receptor (D3) as a novel target for antipsychotics. Biochem Pharmacol. 1992;43:659–666. doi: 10.1016/0006-2952(92)90227-A. [DOI] [PubMed] [Google Scholar]

Articles from Neuroscience Bulletin are provided here courtesy of Springer

RESOURCES