Abstract
Receptor-mediated agonists, such as FMLP, induce an early, phospholipase D (PLD)-mediated accumulation of phosphatidic acid (PA) which may play a role in the activation of NADPH oxidase in human PMN. We have determined the effect of changes in PA production on O2 consumption in intact PMN and the level of NADPH oxidase activity measured in a cell-free assay. Pretreatment of cells with various concentrations of propranolol enhanced (less than or equal to 200 microM) or inhibited (greater than 300 microM) PLD-induced production of PA (mass and radiolabel) in a manner that correlated with enhancement or inhibition of O2 consumption in PMN stimulated with 1 microM FMLP in the absence of cytochalasin B. The concentration-dependent effects of propranolol on FMLP-induced NADPH oxidase activation was confirmed by direct assay of the enzyme in subcellular fractions. In PA extracted from cells pretreated with 200 microM propranolol before stimulation with 1 microM FMLP, phospholipase A1 (PLA1)-digestion for 90 min, followed by quantitation of residual PA, showed that a minimum of 44% of PA in control (undigested) sample was diacyl-PA; alkylacyl-PA remained undigested by PLA1. Propranolol was also observed to have a concentration-dependent enhancement of mass of 1,2-DG formed in PMN stimulated with FMLP. DG levels reached a maximum at 300 microM propranolol and remained unchanged up to 500 microM propranolol. However, in contrast to PA levels, the level of DG produced did not correlate with NADPH oxidase activation. Exogenously added didecanoyl-PA activated NADPH oxidase in a concentration-dependent manner (1-300 microM) in a reconstitution assay using membrane and cytosolic fractions from unstimulated PMN. In addition, PA synergized with SDS for oxidase activation. Taken together, these results indicate that PA plays a second messenger role in the activation of NADPH oxidase in human PMN and that regulation of phospholipase D is a key step in the activation pathway.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agwu D. E., McPhail L. C., Chabot M. C., Daniel L. W., Wykle R. L., McCall C. E. Choline-linked phosphoglycerides. A source of phosphatidic acid and diglycerides in stimulated neutrophils. J Biol Chem. 1989 Jan 25;264(3):1405–1413. [PubMed] [Google Scholar]
- Agwu D. E., McPhail L. C., Wykle R. L., McCall C. E. Mass determination of receptor-mediated accumulation of phosphatidate and diglycerides in human neutrophils measured by Coomassie blue staining and densitometry. Biochem Biophys Res Commun. 1989 Feb 28;159(1):79–86. doi: 10.1016/0006-291x(89)92407-8. [DOI] [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Babior B. M. Oxidants from phagocytes: agents of defense and destruction. Blood. 1984 Nov;64(5):959–966. [PubMed] [Google Scholar]
- Bass D. A., Gerard C., Olbrantz P., Wilson J., McCall C. E., McPhail L. C. Priming of the respiratory burst of neutrophils by diacylglycerol. Independence from activation or translocation of protein kinase C. J Biol Chem. 1987 May 15;262(14):6643–6649. [PubMed] [Google Scholar]
- Bass D. A., McPhail L. C., Schmitt J. D., Morris-Natschke S., McCall C. E., Wykle R. L. Selective priming of rate and duration of the respiratory burst of neutrophils by 1,2-diacyl and 1-O-alkyl-2-acyl diglycerides. Possible relation to effects on protein kinase C. J Biol Chem. 1988 Dec 25;263(36):19610–19617. [PubMed] [Google Scholar]
- Bauldry S. A., Bass D. A., Cousart S. L., McCall C. E. Tumor necrosis factor alpha priming of phospholipase D in human neutrophils. Correlation between phosphatidic acid production and superoxide generation. J Biol Chem. 1991 Mar 5;266(7):4173–4179. [PubMed] [Google Scholar]
- Bellavite P., Corso F., Dusi S., Grzeskowiak M., Della-Bianca V., Rossi F. Activation of NADPH-dependent superoxide production in plasma membrane extracts of pig neutrophils by phosphatidic acid. J Biol Chem. 1988 Jun 15;263(17):8210–8214. [PubMed] [Google Scholar]
- Billah M. M., Eckel S., Mullmann T. J., Egan R. W., Siegel M. I. Phosphatidylcholine hydrolysis by phospholipase D determines phosphatidate and diglyceride levels in chemotactic peptide-stimulated human neutrophils. Involvement of phosphatidate phosphohydrolase in signal transduction. J Biol Chem. 1989 Oct 15;264(29):17069–17077. [PubMed] [Google Scholar]
- Bonser R. W., Thompson N. T., Randall R. W., Garland L. G. Phospholipase D activation is functionally linked to superoxide generation in the human neutrophil. Biochem J. 1989 Dec 1;264(2):617–620. doi: 10.1042/bj2640617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burnham D. N., Uhlinger D. J., Lambeth J. D. Diradylglycerol synergizes with an anionic amphiphile to activate superoxide generation and phosphorylation of p47phox in a cell-free system from human neutrophils. J Biol Chem. 1990 Oct 15;265(29):17550–17559. [PubMed] [Google Scholar]
- Caldwell S. E., McCall C. E., Hendricks C. L., Leone P. A., Bass D. A., McPhail L. C. Coregulation of NADPH oxidase activation and phosphorylation of a 48-kD protein(s) by a cytosolic factor defective in autosomal recessive chronic granulomatous disease. J Clin Invest. 1988 May;81(5):1485–1496. doi: 10.1172/JCI113480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chilton F. H., Ellis J. M., Olson S. C., Wykle R. L. 1-O-alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine. A common source of platelet-activating factor and arachidonate in human polymorphonuclear leukocytes. J Biol Chem. 1984 Oct 10;259(19):12014–12019. [PubMed] [Google Scholar]
- Cox C. C., Dougherty R. W., Ganong B. R., Bell R. M., Niedel J. E., Snyderman R. Differential stimulation of the respiratory burst and lysosomal enzyme secretion in human polymorphonuclear leukocytes by synthetic diacylglycerols. J Immunol. 1986 Jun 15;136(12):4611–4616. [PubMed] [Google Scholar]
- Dachary-Prigent J., Dufourcq J., Lussan C., Boisseau M. Propranolol, chlorpromazine and platelet membrane: a fluorescence study of the drug-membrane interaction. Thromb Res. 1979 Jan;14(1):15–22. doi: 10.1016/0049-3848(79)90020-3. [DOI] [PubMed] [Google Scholar]
- Das I., De Belleroche J., Hirsch S. Stimulation of inositol phosphate production by propranolol in human neutrophils. Prog Neuropsychopharmacol Biol Psychiatry. 1988;12(5):721–726. doi: 10.1016/0278-5846(88)90017-6. [DOI] [PubMed] [Google Scholar]
- Dash D., Rao G. R. Characterization of the effects of propranolol on the physical state of platelet membrane. Arch Biochem Biophys. 1990 Feb 1;276(2):343–347. doi: 10.1016/0003-9861(90)90730-m. [DOI] [PubMed] [Google Scholar]
- Della Bianca V., Grzeskowiak M., Cassatella M. A., Zeni L., Rossi F. Phorbol 12, myristate 13, acetate potentiates the respiratory burst while inhibits phosphoinositide hydrolysis and calcium mobilization by formyl-methionyl-leucyl-phenylalanine in human neutrophils. Biochem Biophys Res Commun. 1986 Mar 13;135(2):556–565. doi: 10.1016/0006-291x(86)90030-6. [DOI] [PubMed] [Google Scholar]
- El Tamer A., Record M., Fauvel J., Chap H., Douste-Blazy L. Studies on ether phospholipids. I. A new method of determination using phospholipase A1 from guinea pig pancreas: application to Krebs II ascites cells. Biochim Biophys Acta. 1984 Apr 18;793(2):213–220. doi: 10.1016/0005-2760(84)90323-0. [DOI] [PubMed] [Google Scholar]
- English D., Taylor G. S. Divergent effects of propranolol on neutrophil superoxide release: involvement of phosphatidic acid and diacylglycerol as second messengers. Biochem Biophys Res Commun. 1991 Mar 15;175(2):423–429. doi: 10.1016/0006-291x(91)91581-v. [DOI] [PubMed] [Google Scholar]
- Farmer J. B., Levy G. P. A comparison of some cardiovascular properties of propranolol, MJ 1999 and quinidine in relation to their effects in hypertensive animals. Br J Pharmacol. 1968 Sep;34(1):116–126. doi: 10.1111/j.1476-5381.1968.tb07955.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gelas P., Ribbes G., Record M., Terce F., Chap H. Differential activation by fMet-Leu-Phe and phorbol ester of a plasma membrane phosphatidylcholine-specific phospholipase D in human neutrophil. FEBS Lett. 1989 Jul 17;251(1-2):213–218. doi: 10.1016/0014-5793(89)81457-7. [DOI] [PubMed] [Google Scholar]
- Gerard C., McPhail L. C., Marfat A., Stimler-Gerard N. P., Bass D. A., McCall C. E. Role of protein kinases in stimulation of human polymorphonuclear leukocyte oxidative metabolism by various agonists. Differential effects of a novel protein kinase inhibitor. J Clin Invest. 1986 Jan;77(1):61–65. doi: 10.1172/JCI112302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grzeskowiak M., Della Bianca V., Cassatella M. A., Rossi F. Complete dissociation between the activation of phosphoinositide turnover and of NADPH oxidase by formyl-methionyl-leucyl-phenylalanine in human neutrophils depleted of Ca2+ and primed by subthreshold doses of phorbol 12,myristate 13,acetate. Biochem Biophys Res Commun. 1986 Mar 28;135(3):785–794. doi: 10.1016/0006-291x(86)90997-6. [DOI] [PubMed] [Google Scholar]
- Howe R., Shanks R. G. Optical isomers of propranolol. Nature. 1966 Jun 25;210(5043):1336–1338. doi: 10.1038/2101336a0. [DOI] [PubMed] [Google Scholar]
- Ishitoya J., Yamakawa A., Takenawa T. Translocation of diacylglycerol kinase in response to chemotactic peptide and phorbol ester in neutrophils. Biochem Biophys Res Commun. 1987 Apr 29;144(2):1025–1030. doi: 10.1016/s0006-291x(87)80066-9. [DOI] [PubMed] [Google Scholar]
- Jackowski S., Rock C. O. Stimulation of phosphatidylinositol 4,5-bisphosphate phospholipase C activity by phosphatidic acid. Arch Biochem Biophys. 1989 Feb 1;268(2):516–524. doi: 10.1016/0003-9861(89)90318-4. [DOI] [PubMed] [Google Scholar]
- Kerry R., Scrutton M. C., Wallis R. B. Beta-adrenoceptor antagonists and human platelets: relationship of effects to lipid solubility. Biochem Pharmacol. 1984 Aug 15;33(16):2615–2622. doi: 10.1016/0006-2952(84)90634-8. [DOI] [PubMed] [Google Scholar]
- Koenderman L., Tool A., Roos D., Verhoeven A. J. 1,2-Diacylglycerol accumulation in human neutrophils does not correlate with respiratory burst activation. FEBS Lett. 1989 Jan 30;243(2):399–403. doi: 10.1016/0014-5793(89)80170-x. [DOI] [PubMed] [Google Scholar]
- Korchak H. M., Vosshall L. B., Haines K. A., Wilkenfeld C., Lundquist K. F., Weissmann G. Activation of the human neutrophil by calcium-mobilizing ligands. II. Correlation of calcium, diacyl glycerol, and phosphatidic acid generation with superoxide anion generation. J Biol Chem. 1988 Aug 15;263(23):11098–11105. [PubMed] [Google Scholar]
- Koul O., Hauser G. Modulation of rat brain cytosolic phosphatidate phosphohydrolase: effect of cationic amphiphilic drugs and divalent cations. Arch Biochem Biophys. 1987 Mar;253(2):453–461. doi: 10.1016/0003-9861(87)90199-8. [DOI] [PubMed] [Google Scholar]
- Kroll M. H., Zavoico G. B., Schafer A. I. Second messenger function of phosphatidic acid in platelet activation. J Cell Physiol. 1989 Jun;139(3):558–564. doi: 10.1002/jcp.1041390315. [DOI] [PubMed] [Google Scholar]
- MASSEY V. The microestimation of succinate and the extinction coefficient of cytochrome c. Biochim Biophys Acta. 1959 Jul;34:255–256. doi: 10.1016/0006-3002(59)90259-8. [DOI] [PubMed] [Google Scholar]
- Martin T. W. Formation of diacylglycerol by a phospholipase D-phosphatidate phosphatase pathway specific for phosphatidylcholine in endothelial cells. Biochim Biophys Acta. 1988 Oct 14;962(3):282–296. doi: 10.1016/0005-2760(88)90258-5. [DOI] [PubMed] [Google Scholar]
- McPhail L. C., Shirley P. S., Clayton C. C., Snyderman R. Activation of the respiratory burst enzyme from human neutrophils in a cell-free system. Evidence for a soluble cofactor. J Clin Invest. 1985 May;75(5):1735–1739. doi: 10.1172/JCI111884. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McPhail L. C., Snyderman R. Activation of the respiratory burst enzyme in human polymorphonuclear leukocytes by chemoattractants and other soluble stimuli. Evidence that the same oxidase is activated by different transductional mechanisms. J Clin Invest. 1983 Jul;72(1):192–200. doi: 10.1172/JCI110957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murray K. T., Reilly C., Koshakji R. P., Roden D. M., Lineberry M. D., Wood A. J., Siddoway L. A., Barbey J. T., Woosley R. L. Suppression of ventricular arrhythmias in man by d-propranolol independent of beta-adrenergic receptor blockade. J Clin Invest. 1990 Mar;85(3):836–842. doi: 10.1172/JCI114510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ohtsuka T., Ozawa M., Okamura N., Ishibashi S. Stimulatory effects of a short chain phosphatidate on superoxide anion production in guinea pig polymorphonuclear leukocytes. J Biochem. 1989 Aug;106(2):259–263. doi: 10.1093/oxfordjournals.jbchem.a122841. [DOI] [PubMed] [Google Scholar]
- Pai J. K., Siegel M. I., Egan R. W., Billah M. M. Activation of phospholipase D by chemotactic peptide in HL-60 granulocytes. Biochem Biophys Res Commun. 1988 Jan 15;150(1):355–364. doi: 10.1016/0006-291x(88)90528-1. [DOI] [PubMed] [Google Scholar]
- Pai J. K., Siegel M. I., Egan R. W., Billah M. M. Phospholipase D catalyzes phospholipid metabolism in chemotactic peptide-stimulated HL-60 granulocytes. J Biol Chem. 1988 Sep 5;263(25):12472–12477. [PubMed] [Google Scholar]
- Pappu A. S., Hauser G. Propranolol-induced inhibition of rat brain cytoplasmic phosphatidate phosphohydrolase. Neurochem Res. 1983 Dec;8(12):1565–1575. doi: 10.1007/BF00964158. [DOI] [PubMed] [Google Scholar]
- Parks J. S., Bullock B. C., Rudel L. L. The reactivity of plasma phospholipids with lecithin:cholesterol acyltransferase is decreased in fish oil-fed monkeys. J Biol Chem. 1989 Feb 15;264(5):2545–2551. [PubMed] [Google Scholar]
- Reibman J., Korchak H. M., Vosshall L. B., Haines K. A., Rich A. M., Weissmann G. Changes in diacylglycerol labeling, cell shape, and protein phosphorylation distinguish "triggering" from "activation" of human neutrophils. J Biol Chem. 1988 May 5;263(13):6322–6328. [PubMed] [Google Scholar]
- Rider L. G., Niedel J. E. Diacylglycerol accumulation and superoxide anion production in stimulated human neutrophils. J Biol Chem. 1987 Apr 25;262(12):5603–5608. [PubMed] [Google Scholar]
- Rossi F., Grzeskowiak M., Della Bianca V., Calzetti F., Gandini G. Phosphatidic acid and not diacylglycerol generated by phospholipase D is functionally linked to the activation of the NADPH oxidase by FMLP in human neutrophils. Biochem Biophys Res Commun. 1990 Apr 16;168(1):320–327. doi: 10.1016/0006-291x(90)91711-z. [DOI] [PubMed] [Google Scholar]
- Rossi F., Grzeskowiak M., Della Bianca V. Double stimulation with FMLP and Con A restores the activation of the respiratory burst but not of the phosphoinositide turnover in Ca2+-depleted human neutrophils. A further example of dissociation between stimulation of the NADPH oxidase and phosphoinositide turnover. Biochem Biophys Res Commun. 1986 Oct 15;140(1):1–11. doi: 10.1016/0006-291x(86)91050-8. [DOI] [PubMed] [Google Scholar]
- Smith C. D., Lane B. C., Kusaka I., Verghese M. W., Snyderman R. Chemoattractant receptor-induced hydrolysis of phosphatidylinositol 4,5-bisphosphate in human polymorphonuclear leukocyte membranes. Requirement for a guanine nucleotide regulatory protein. J Biol Chem. 1985 May 25;260(10):5875–5878. [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- Smith R. J., Sam L. M., Justen J. M. Diacylglycerols modulate human polymorphonuclear neutrophil responsiveness: effects on intracellular calcium mobilization, granule exocytosis, and superoxide anion production. J Leukoc Biol. 1988 May;43(5):411–419. doi: 10.1002/jlb.43.5.411. [DOI] [PubMed] [Google Scholar]
- Surles J. R., Wykle R. L., O'Flaherty J. T., Salzer W. L., Thomas M. J., Snyder F., Piantadosi C. Facile synthesis of platelet-activating factor and racemic analogues containing unsaturation in the sn-1-alkyl chain. J Med Chem. 1985 Jan;28(1):73–78. doi: 10.1021/jm00379a015. [DOI] [PubMed] [Google Scholar]
- Takai Y., Kishimoto A., Kikkawa U., Mori T., Nishizuka Y. Unsaturated diacylglycerol as a possible messenger for the activation of calcium-activated, phospholipid-dependent protein kinase system. Biochem Biophys Res Commun. 1979 Dec 28;91(4):1218–1224. doi: 10.1016/0006-291x(79)91197-5. [DOI] [PubMed] [Google Scholar]
- Takenawa T., Ishitoya J., Homma Y., Kato M., Nagai Y. Role of enhanced inositol phospholipid metabolism in neutrophil activation. Biochem Pharmacol. 1985 Jun 1;34(11):1931–1935. doi: 10.1016/0006-2952(85)90311-9. [DOI] [PubMed] [Google Scholar]
- Truett A. P., 3rd, Verghese M. W., Dillon S. B., Snyderman R. Calcium influx stimulates a second pathway for sustained diacylglycerol production in leukocytes activated by chemoattractants. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1549–1553. doi: 10.1073/pnas.85.5.1549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tyagi S. R., Tamura M., Burnham D. N., Lambeth J. D. Phorbol myristate acetate (PMA) augments chemoattractant-induced diglyceride generation in human neutrophils but inhibits phosphoinositide hydrolysis. Implications for the mechanism of PMA priming of the respiratory burst. J Biol Chem. 1988 Sep 15;263(26):13191–13198. [PubMed] [Google Scholar]
- Volpi M., Yassin R., Naccache P. H., Sha'afi R. I. Chemotactic factor causes rapid decreases in phosphatidylinositol,4,5-bisphosphate and phosphatidylinositol 4-monophosphate in rabbit neutrophils. Biochem Biophys Res Commun. 1983 May 16;112(3):957–964. doi: 10.1016/0006-291x(83)91711-4. [DOI] [PubMed] [Google Scholar]