Abstract
Concanavalin A (Con A) is a tetrameric plant lectin that disrupts plasma membrane-cytoskeletal interactions and alters plasma membrane fluidity. We used Con A as a probe to explore beta-adrenergic and muscarinic cholinergic receptor-mediated regulation of cAMP in intact neonatal rat ventricular myocytes. Preincubation with Con A, 0.5 micrograms/ml, attenuated 1 microM (-)-norepinephrine (NE)-induced downregulation of beta-adrenergic receptors and resulted in a 50% augmentation of cAMP accumulation stimulated by 1 microM NE. Con A also augmented forskolin (1-10 microM)-stimulated cAMP accumulation by an average of 37% (P less than 0.05); however, Con A preincubation had no effect on basal or cholera toxin-stimulated cAMP content. The muscarinic cholinergic agonist carbachol (1-100 microM) decreased 1 microM NE-stimulated cAMP generation by an average of 32% (n = 7, P less than 0.05); preincubation with Con A further enhanced the inhibitory effect of carbachol by 18% (n = 7, P less than 0.05). Carbachol (1 microM) for 2 h decreased muscarinic cholinergic receptor density in whole cells by 33%; preincubation with Con A prevented this receptor downregulation. Con A pretreatment did not affect (-)-isoproterenol- or forskolin-stimulated adenylate cyclase activity in cell homogenates, suggesting that an intact cytoarchitecture is necessary for Con A to augment cAMP formation. We conclude that Con A, through its modulation of beta-adrenergic and muscarinic cholinergic receptor signaling, amplifies both stimulatory and inhibitory adenylate cyclase-linked pathways in intact neonatal ventricular myocytes. These data suggest the possibility that plasma membrane-cytoskeletal interaction is an important regulator of transmembrane signaling because interference with this interaction results in alterations in cAMP accumulation mediated by both beta-adrenergic- and muscarinic cholinergic-adenylate cyclase pathways.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alvarez R., Daniels D. V. A single column method for the assay of adenylate cyclase. Anal Biochem. 1990 May 15;187(1):98–103. doi: 10.1016/0003-2697(90)90423-7. [DOI] [PubMed] [Google Scholar]
- Ash J. F., Louvard D., Singer S. J. Antibody-induced linkages of plasma membrane proteins to intracellular actomyosin-containing filaments in cultured fibroblasts. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5584–5588. doi: 10.1073/pnas.74.12.5584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benovic J. L., Pike L. J., Cerione R. A., Staniszewski C., Yoshimasa T., Codina J., Caron M. G., Lefkowitz R. J. Phosphorylation of the mammalian beta-adrenergic receptor by cyclic AMP-dependent protein kinase. Regulation of the rate of receptor phosphorylation and dephosphorylation by agonist occupancy and effects on coupling of the receptor to the stimulatory guanine nucleotide regulatory protein. J Biol Chem. 1985 Jun 10;260(11):7094–7101. [PubMed] [Google Scholar]
- Bouvier M., Leeb-Lundberg L. M., Benovic J. L., Caron M. G., Lefkowitz R. J. Regulation of adrenergic receptor function by phosphorylation. II. Effects of agonist occupancy on phosphorylation of alpha 1- and beta 2-adrenergic receptors by protein kinase C and the cyclic AMP-dependent protein kinase. J Biol Chem. 1987 Mar 5;262(7):3106–3113. [PubMed] [Google Scholar]
- Burn P., Kupfer A., Singer S. J. Dynamic membrane-cytoskeletal interactions: specific association of integrin and talin arises in vivo after phorbol ester treatment of peripheral blood lymphocytes. Proc Natl Acad Sci U S A. 1988 Jan;85(2):497–501. doi: 10.1073/pnas.85.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlson K. E., Woolkalis M. J., Newhouse M. G., Manning D. R. Fractionation of the beta subunit common to guanine nucleotide-binding regulatory proteins with the cytoskeleton. Mol Pharmacol. 1986 Nov;30(5):463–468. [PubMed] [Google Scholar]
- Cherksey B. D., Zadunaisky J. A., Murphy R. B. Cytoskeletal constraint of the beta-adrenergic receptor in frog erythrocyte membranes. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6401–6405. doi: 10.1073/pnas.77.11.6401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Darfler F. J., Mahan L. C., Koachman A. M., Insel P. A. Stimulation of forskolin of intact S49 lymphoma cells involves the nucleotide regulatory protein of adenylate cyclase. J Biol Chem. 1982 Oct 25;257(20):11901–11907. [PubMed] [Google Scholar]
- Eide B., Gierschik P., Milligan G., Mullaney I., Unson C., Goldsmith P., Spiegel A. GTP-binding proteins in brain and neutrophil are tethered to the plasma membrane via their amino termini. Biochem Biophys Res Commun. 1987 Nov 13;148(3):1398–1405. doi: 10.1016/s0006-291x(87)80287-5. [DOI] [PubMed] [Google Scholar]
- Geiger B. Membrane-cytoskeleton interaction. Biochim Biophys Acta. 1983 Aug 11;737(3-4):305–341. doi: 10.1016/0304-4157(83)90005-9. [DOI] [PubMed] [Google Scholar]
- Henrich C. J., Simpson P. C. Differential acute and chronic response of protein kinase C in cultured neonatal rat heart myocytes to alpha 1-adrenergic and phorbol ester stimulation. J Mol Cell Cardiol. 1988 Dec;20(12):1081–1085. doi: 10.1016/0022-2828(88)90588-3. [DOI] [PubMed] [Google Scholar]
- Insel P. A., Koachman A. M. Cytochalasin B enhances hormone and cholera toxin-stimulated cyclic AMP accumulation in S49 lymphoma cells. J Biol Chem. 1982 Aug 25;257(16):9717–9723. [PubMed] [Google Scholar]
- Iwasa Y., Hosey M. M. Phosphorylation of cardiac sarcolemma proteins by the calcium-activated phospholipid-dependent protein kinase. J Biol Chem. 1984 Jan 10;259(1):534–540. [PubMed] [Google Scholar]
- Jones L. G., Goldstein D., Brown J. H. Guanine nucleotide-dependent inositol trisphosphate formation in chick heart cells. Circ Res. 1988 Feb;62(2):299–305. doi: 10.1161/01.res.62.2.299. [DOI] [PubMed] [Google Scholar]
- Kammer K., Burger M. M. Release of cell-associated concanavalin A by methyl alpha-D-mannopyranoside reveals three binding states of concanavalin-A receptors on mouse fibroblasts. Eur J Biochem. 1983 May 2;132(2):433–439. doi: 10.1111/j.1432-1033.1983.tb07381.x. [DOI] [PubMed] [Google Scholar]
- Karliner J. S., Simpson P. C., Honbo N., Woloszyn W. Mechanisms and time course of beta 1 adrenoceptor desensitisation in mammalian cardiac myocytes. Cardiovasc Res. 1986 Mar;20(3):221–228. doi: 10.1093/cvr/20.3.221. [DOI] [PubMed] [Google Scholar]
- Karliner J. S., Stevens M. B., Honbo N., Hoffman J. I. Effects of acute ischemia in the dog on myocardial blood flow, beta receptors, and adenylate cyclase activity with and without chronic beta blockade. J Clin Invest. 1989 Feb;83(2):474–481. doi: 10.1172/JCI113906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kassis S., Zaremba T., Patel J., Fishman P. H. Phorbol esters and beta-adrenergic agonists mediate desensitization of adenylate cyclase in rat glioma C6 cells by distinct mechanisms. J Biol Chem. 1985 Jul 25;260(15):8911–8917. [PubMed] [Google Scholar]
- Kwatra M. M., Hosey M. M. Phosphorylation of the cardiac muscarinic receptor in intact chick heart and its regulation by a muscarinic agonist. J Biol Chem. 1986 Sep 25;261(27):12429–12432. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Leeb-Lundberg L. M., Cotecchia S., Lomasney J. W., DeBernardis J. F., Lefkowitz R. J., Caron M. G. Phorbol esters promote alpha 1-adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5651–5655. doi: 10.1073/pnas.82.17.5651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Limas C. J., Limas C. Involvement of microtubules in the isoproterenol-induced 'down'-regulation of myocardial beta-adrenergic receptors. Biochim Biophys Acta. 1983 Oct 26;735(1):181–184. doi: 10.1016/0005-2736(83)90273-0. [DOI] [PubMed] [Google Scholar]
- Marsh J. D., Lachance D., Kim D. Mechanisms of beta-adrenergic receptor regulation in cultured chick heart cells. Role of cytoskeleton function and protein synthesis. Circ Res. 1985 Jul;57(1):171–181. doi: 10.1161/01.res.57.1.171. [DOI] [PubMed] [Google Scholar]
- Mescher M. F., Jose M. J., Balk S. P. Actin-containing matrix associated with the plasma membrane of murine tumour and lymphoid cells. Nature. 1981 Jan 15;289(5794):139–144. doi: 10.1038/289139a0. [DOI] [PubMed] [Google Scholar]
- Mochly-Rosen D., Henrich C. J., Cheever L., Khaner H., Simpson P. C. A protein kinase C isozyme is translocated to cytoskeletal elements on activation. Cell Regul. 1990 Aug;1(9):693–706. doi: 10.1091/mbc.1.9.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakajima M., Tamura E., Irimura T., Toyoshima S., Hirano H., Osawa T. Mechanism of the concanavalin A-induced change of membrane fluidity of chicken erythrocytes. J Biochem. 1981 Feb;89(2):665–675. doi: 10.1093/oxfordjournals.jbchem.a133244. [DOI] [PubMed] [Google Scholar]
- Osawa S., Hall P. F. Adenosine 3',5'-monophosphate-dependent protein kinase associated with the cytoskeleton of adrenal tumor cells. Endocrinology. 1985 Dec;117(6):2347–2356. doi: 10.1210/endo-117-6-2347. [DOI] [PubMed] [Google Scholar]
- Patel J., Kassis S. Concanavalin A prevents phorbol-mediated redistribution of protein kinase C and beta-adrenergic receptors in rat glioma C6 cells. Biochem Biophys Res Commun. 1987 May 14;144(3):1265–1272. doi: 10.1016/0006-291x(87)91447-1. [DOI] [PubMed] [Google Scholar]
- Ramachandran J. A new simple method for separation of adenosine 3',5'-cyclic monophosphate from other nucleotides and its use in the assay of adenyl cyclase. Anal Biochem. 1971 Sep;43(1):227–239. doi: 10.1016/0003-2697(71)90128-x. [DOI] [PubMed] [Google Scholar]
- Rasenick M. M., Stein P. J., Bitensky M. W. The regulatory subunit of adenylate cyclase interacts with cytoskeletal components. Nature. 1981 Dec 10;294(5841):560–562. doi: 10.1038/294560a0. [DOI] [PubMed] [Google Scholar]
- Reeke G. N., Jr, Becker J. W., Cunningham B. A., Gunther G. R., Wang J. L., Edelman G. M. Relationships between the structure and activities of concanavalin A. Ann N Y Acad Sci. 1974;234(0):369–382. doi: 10.1111/j.1749-6632.1974.tb53049.x. [DOI] [PubMed] [Google Scholar]
- Sahyoun N. E., LeVine H., 3rd, Hebdon G. M., Khouri R. K., Cuatrecasas P. Evidence for cytoskeletal associations of the adenylate cyclase system obtained by differential extraction of rat erythrocyte ghosts. Biochem Biophys Res Commun. 1981 Aug 14;101(3):1003–1010. doi: 10.1016/0006-291x(81)91848-9. [DOI] [PubMed] [Google Scholar]
- Seamon K., Daly J. W. Activation of adenylate cyclase by the diterpene forskolin does not require the guanine nucleotide regulatory protein. J Biol Chem. 1981 Oct 10;256(19):9799–9801. [PubMed] [Google Scholar]
- Sibley D. R., Benovic J. L., Caron M. G., Lefkowitz R. J. Regulation of transmembrane signaling by receptor phosphorylation. Cell. 1987 Mar 27;48(6):913–922. doi: 10.1016/0092-8674(87)90700-8. [DOI] [PubMed] [Google Scholar]
- Simpson P., Savion S. Differentiation of rat myocytes in single cell cultures with and without proliferating nonmyocardial cells. Cross-striations, ultrastructure, and chronotropic response to isoproterenol. Circ Res. 1982 Jan;50(1):101–116. doi: 10.1161/01.res.50.1.101. [DOI] [PubMed] [Google Scholar]
- Steiner A. L., Parker C. W., Kipnis D. M. Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. J Biol Chem. 1972 Feb 25;247(4):1106–1113. [PubMed] [Google Scholar]
- Stryer L., Bourne H. R. G proteins: a family of signal transducers. Annu Rev Cell Biol. 1986;2:391–419. doi: 10.1146/annurev.cb.02.110186.002135. [DOI] [PubMed] [Google Scholar]
- Waldo G. L., Northup J. K., Perkins J. P., Harden T. K. Characterization of an altered membrane form of the beta-adrenergic receptor produced during agonist-induced desensitization. J Biol Chem. 1983 Nov 25;258(22):13900–13908. [PubMed] [Google Scholar]
