Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1991 Sep;88(3):833–840. doi: 10.1172/JCI115384

Differential effects of insulin deficiency on albumin and fibrinogen synthesis in humans.

P De Feo 1, M G Gaisano 1, M W Haymond 1
PMCID: PMC295469  PMID: 1909352

Abstract

Insulin deficiency decreases tissue protein synthesis, albumin mRNA concentration, and albumin synthesis in rats. In contrast, insulin deficiency does not change, or, paradoxically, increases estimates of whole body protein synthesis in humans. To determine if such estimates of whole body protein synthesis could obscure potential differential effects of insulin on the synthetic rates of individual proteins, we determined whole body protein synthesis and albumin and fibrinogen fractional synthetic rates using 5-h simultaneous infusions of [14C]leucine and [13C]bicarbonate, in six type 1 diabetics during a continuous i.v. insulin infusion (to maintain euglycemia) and after short-term insulin withdrawal (12 +/- 2 h). Insulin withdrawal increased (P less than 0.03) whole body proteolysis by approximately 35% and leucine oxidation by approximately 100%, but did not change 13CO2 recovery from NaH13CO3 or estimates of whole body protein synthesis (P = 0.21). Insulin deficiency was associated with a 29% decrease (P less than 0.03) in the albumin fractional synthetic rate but a 50% increase (P less than 0.03) in that of fibrinogen. These data provide strong evidence that albumin synthesis in humans is an insulin-sensitive process, a conclusion consistent with observations in rats. The increase in fibrinogen synthesis during insulin deficiency most likely reflects an acute phase protein response due to metabolic stress. These data suggest that the absence of changes in whole body protein synthesis after insulin withdrawal is the result of the summation of differential effects of insulin deficiency on the synthesis of specific body proteins.

Full text

PDF
833

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMRIS A., AMRIS C. J. TURNOVER AND DISTRIBUTION OF 131-IODINE-LABELLED HUMAN FIBRINOGEN. Thromb Diath Haemorrh. 1964 Jul 31;11:404–422. [PubMed] [Google Scholar]
  2. Airhart J., Arnold J. A., Stirewalt W. S., Low R. B. Insulin stimulation of protein synthesis in cultured skeletal and cardiac muscle cells. Am J Physiol. 1982 Jul;243(1):C81–C86. doi: 10.1152/ajpcell.1982.243.1.C81. [DOI] [PubMed] [Google Scholar]
  3. Alessi M. C., Juhan-Vague I., Kooistra T., Declerck P. J., Collen D. Insulin stimulates the synthesis of plasminogen activator inhibitor 1 by the human hepatocellular cell line Hep G2. Thromb Haemost. 1988 Dec 22;60(3):491–494. [PubMed] [Google Scholar]
  4. Allsop J. R., Wolfe R. R., Burke J. F. Tracer priming the bicarbonate pool. J Appl Physiol Respir Environ Exerc Physiol. 1978 Jul;45(1):137–139. doi: 10.1152/jappl.1978.45.1.137. [DOI] [PubMed] [Google Scholar]
  5. Atchley D. W., Loeb R. F., Richards D. W., Benedict E. M., Driscoll M. E. ON DIABETIC ACIDOSIS: A Detailed Study of Electrolyte Balances Following the Withdrawal and Reestablishment of Insulin Therapy. J Clin Invest. 1933 Mar;12(2):297–326. doi: 10.1172/JCI100504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. BERSON S. A., YALOW R. S., SCHREIBER S. S., POST J. Tracer experiments with I131 labeled human serum albumin: distribution and degradation studies. J Clin Invest. 1953 Aug;32(8):746–768. doi: 10.1172/JCI102789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Barrieux A., Neeley W. E., Dillmann W. H. Diabetes-induced alterations in the translational activity of specific messenger ribonucleic acids isolated from rat hearts. Circ Res. 1985 Aug;57(2):296–303. doi: 10.1161/01.res.57.2.296. [DOI] [PubMed] [Google Scholar]
  8. Beaufrere B., Horber F. F., Schwenk W. F., Marsh H. M., Matthews D., Gerich J. E., Haymond M. W. Glucocorticosteroids increase leucine oxidation and impair leucine balance in humans. Am J Physiol. 1989 Nov;257(5 Pt 1):E712–E721. doi: 10.1152/ajpendo.1989.257.5.E712. [DOI] [PubMed] [Google Scholar]
  9. Beitins I. Z., Shaw M. H., Kowarski A., Migeon C. J. Comparison of competitive protein binding radioassay of cortisol to double isotope dilution and Porter Silber methods. Steroids. 1970 Jun;15(6):765–776. doi: 10.1016/s0039-128x(70)80045-9. [DOI] [PubMed] [Google Scholar]
  10. Bennet W. M., Connacher A. A., Smith K., Jung R. T., Rennie M. J. Inability to stimulate skeletal muscle or whole body protein synthesis in type 1 (insulin-dependent) diabetic patients by insulin-plus-glucose during amino acid infusion: studies of incorporation and turnover of tracer L-[1-13C]leucine. Diabetologia. 1990 Jan;33(1):43–51. doi: 10.1007/BF00586460. [DOI] [PubMed] [Google Scholar]
  11. Carraro F., Hartl W. H., Stuart C. A., Layman D. K., Jahoor F., Wolfe R. R. Whole body and plasma protein synthesis in exercise and recovery in human subjects. Am J Physiol. 1990 May;258(5 Pt 1):E821–E831. doi: 10.1152/ajpendo.1990.258.5.E821. [DOI] [PubMed] [Google Scholar]
  12. Castellino P., Luzi L., Simonson D. C., Haymond M., DeFronzo R. A. Effect of insulin and plasma amino acid concentrations on leucine metabolism in man. Role of substrate availability on estimates of whole body protein synthesis. J Clin Invest. 1987 Dec;80(6):1784–1793. doi: 10.1172/JCI113272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chiasson J. L., Liljenquist J. E., Finger F. E., Lacy W. W. Differential sensitivity of glycogenolysis and gluconeogenesis to insulin infusions in dogs. Diabetes. 1976 Apr;25(4):283–291. doi: 10.2337/diab.25.4.283. [DOI] [PubMed] [Google Scholar]
  14. Couet C., Fukagawa N. K., Matthews D. E., Bier D. M., Young V. R. Plasma amino acid kinetics during acute states of glucagon deficiency and excess in healthy adults. Am J Physiol. 1990 Jan;258(1 Pt 1):E78–E85. doi: 10.1152/ajpendo.1990.258.1.E78. [DOI] [PubMed] [Google Scholar]
  15. DEBRO J. R., KORNER A. Solubility of albumin in alcohol after precipitation by trichloroacetic acid: a simplified procedure for separation of albumin. Nature. 1956 Nov 10;178(4541):1067–1067. doi: 10.1038/1781067a0. [DOI] [PubMed] [Google Scholar]
  16. Darmaun D., Matthews D. E., Bier D. M. Physiological hypercortisolemia increases proteolysis, glutamine, and alanine production. Am J Physiol. 1988 Sep;255(3 Pt 1):E366–E373. doi: 10.1152/ajpendo.1988.255.3.E366. [DOI] [PubMed] [Google Scholar]
  17. Dillmann W. H. Diabetes mellitus-induced changes in the concentration of specific mRNAs and proteins. Diabetes Metab Rev. 1988 Dec;4(8):789–797. doi: 10.1002/dmr.5610040807. [DOI] [PubMed] [Google Scholar]
  18. Downey R. S., Mellone A., Matthews D. E. Effect of tracer infusion site on measurement of bicarbonate-carbon dioxide metabolism in dogs. J Appl Physiol (1985) 1986 Apr;60(4):1248–1253. doi: 10.1152/jappl.1986.60.4.1248. [DOI] [PubMed] [Google Scholar]
  19. Flaim K. E., Copenhaver M. E., Jefferson L. S. Effects of diabetes on protein synthesis in fast- and slow-twitch rat skeletal muscle. Am J Physiol. 1980 Jul;239(1):E88–E95. doi: 10.1152/ajpendo.1980.239.1.E88. [DOI] [PubMed] [Google Scholar]
  20. Flaim K. E., Hutson S. M., Lloyd C. E., Taylor J. M., Shiman R., Jefferson L. S. Direct effect of insulin on albumin gene expression in primary cultures of rat hepatocytes. Am J Physiol. 1985 Nov;249(5 Pt 1):E447–E453. doi: 10.1152/ajpendo.1985.249.5.E447. [DOI] [PubMed] [Google Scholar]
  21. Fukagawa N. K., Minaker K. L., Rowe J. W., Goodman M. N., Matthews D. E., Bier D. M., Young V. R. Insulin-mediated reduction of whole body protein breakdown. Dose-response effects on leucine metabolism in postabsorptive men. J Clin Invest. 1985 Dec;76(6):2306–2311. doi: 10.1172/JCI112240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gelfand R. A., Barrett E. J. Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. J Clin Invest. 1987 Jul;80(1):1–6. doi: 10.1172/JCI113033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Glaumann H., Ericsson J. L. Evidence for the participation of the Golgi apparatus in the intracellular transport of nascent albumin in the liver cell. J Cell Biol. 1970 Dec;47(3):555–567. doi: 10.1083/jcb.47.3.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Granner D., Andreone T., Sasaki K., Beale E. Inhibition of transcription of the phosphoenolpyruvate carboxykinase gene by insulin. Nature. 1983 Oct 6;305(5934):549–551. doi: 10.1038/305549a0. [DOI] [PubMed] [Google Scholar]
  25. Grieninger G., Plant P. W., Liang T. J., Kalb R. G., Amrani D., Mosesson M. W., Hertzberg K. M., Pindyck J. Hormonal regulation of fibrinogen synthesis in cultured hepatocytes. Ann N Y Acad Sci. 1983 Jun 27;408:469–489. doi: 10.1111/j.1749-6632.1983.tb23267.x. [DOI] [PubMed] [Google Scholar]
  26. Heding L. G. Radioimmunological determination of human C-peptide in serum. Diabetologia. 1975 Dec;11(6):541–548. doi: 10.1007/BF01222104. [DOI] [PubMed] [Google Scholar]
  27. Heinrich P. C., Castell J. V., Andus T. Interleukin-6 and the acute phase response. Biochem J. 1990 Feb 1;265(3):621–636. doi: 10.1042/bj2650621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Hjemdahl P., Daleskog M., Kahan T. Determination of plasma catecholamines by high performance liquid chromatography with electrochemical detection: comparison with a radioenzymatic method. Life Sci. 1979 Jul 9;25(2):131–138. doi: 10.1016/0024-3205(79)90384-9. [DOI] [PubMed] [Google Scholar]
  29. Horber F. F., Horber-Feyder C. M., Krayer S., Schwenk W. F., Haymond M. W. Plasma reciprocal pool specific activity predicts that of intracellular free leucine for protein synthesis. Am J Physiol. 1989 Sep;257(3 Pt 1):E385–E399. doi: 10.1152/ajpendo.1989.257.3.E385. [DOI] [PubMed] [Google Scholar]
  30. Horber F. F., Kahl J., Lecavalier L., Krom B., Haymond M. W. Determination of leucine and alpha-ketoisocaproic acid concentrations and specific activity in plasma and leucine specific activities in proteins using high-performance liquid chromatography. J Chromatogr. 1989 Oct 27;495:81–94. doi: 10.1016/s0378-4347(00)82611-0. [DOI] [PubMed] [Google Scholar]
  31. Jefferson L. S. Lilly Lecture 1979: role of insulin in the regulation of protein synthesis. Diabetes. 1980 Jun;29(6):487–496. doi: 10.2337/diab.29.6.487. [DOI] [PubMed] [Google Scholar]
  32. Kimball S. R., Jefferson L. S. Cellular mechanisms involved in the action of insulin on protein synthesis. Diabetes Metab Rev. 1988 Dec;4(8):773–787. doi: 10.1002/dmr.5610040806. [DOI] [PubMed] [Google Scholar]
  33. Lloyd C. E., Kalinyak J. E., Hutson S. M., Jefferson L. S. Stimulation of albumin gene transcription by insulin in primary cultures of rat hepatocytes. Am J Physiol. 1987 Feb;252(2 Pt 1):C205–C214. doi: 10.1152/ajpcell.1987.252.2.C205. [DOI] [PubMed] [Google Scholar]
  34. Luzi L., Castellino P., Simonson D. C., Petrides A. S., DeFronzo R. A. Leucine metabolism in IDDM. Role of insulin and substrate availability. Diabetes. 1990 Jan;39(1):38–48. doi: 10.2337/diacare.39.1.38. [DOI] [PubMed] [Google Scholar]
  35. MCFARLANE A. S., TODD D., CROMWELL S. FIBRINOGEN CATABOLISM IN HUMANS. Clin Sci. 1964 Jun;26:415–420. [PubMed] [Google Scholar]
  36. McGuire E. A., Helderman J. H., Tobin J. D., Andres R., Berman M. Effects of arterial versus venous sampling on analysis of glucose kinetics in man. J Appl Physiol. 1976 Oct;41(4):565–573. doi: 10.1152/jappl.1976.41.4.565. [DOI] [PubMed] [Google Scholar]
  37. Miles J. M., Nissen S. L., Rizza R. A., Gerich J. E., Haymond M. W. Failure of infused beta-hydroxybutyrate to decrease proteolysis in man. Diabetes. 1983 Mar;32(3):197–205. doi: 10.2337/diab.32.3.197. [DOI] [PubMed] [Google Scholar]
  38. Miles J., Glasscock R., Aikens J., Gerich J., Haymond M. A microfluorometric method for the determination of free fatty acids in plasma. J Lipid Res. 1983 Jan;24(1):96–99. [PubMed] [Google Scholar]
  39. Millikan W. J., Jr, Henderson J. M., Galloway J. R., Warren W. D., Matthews D. E., McGhee A., Kutner M. H. In vivo measurement of leucine metabolism with stable isotopes in normal subjects and in those with cirrhosis fed conventional and branched-chain amino acid-enriched diets. Surgery. 1985 Sep;98(3):405–413. [PubMed] [Google Scholar]
  40. Mortimore G. E., Mondon C. E. Inhibition by insulin of valine turnover in liver. Evidence for a general control of proteolysis. J Biol Chem. 1970 May 10;245(9):2375–2383. [PubMed] [Google Scholar]
  41. Nair K. S., Ford G. C., Halliday D. Effect of intravenous insulin treatment on in vivo whole body leucine kinetics and oxygen consumption in insulin-deprived type I diabetic patients. Metabolism. 1987 May;36(5):491–495. doi: 10.1016/0026-0495(87)90049-7. [DOI] [PubMed] [Google Scholar]
  42. Nair K. S., Garrow J. S., Ford C., Mahler R. F., Halliday D. Effect of poor diabetic control and obesity on whole body protein metabolism in man. Diabetologia. 1983 Nov;25(5):400–403. doi: 10.1007/BF00282518. [DOI] [PubMed] [Google Scholar]
  43. Nair K. S., Halliday D., Matthews D. E., Welle S. L. Hyperglucagonemia during insulin deficiency accelerates protein catabolism. Am J Physiol. 1987 Aug;253(2 Pt 1):E208–E213. doi: 10.1152/ajpendo.1987.253.2.E208. [DOI] [PubMed] [Google Scholar]
  44. Nair K. S., Welle S. L., Halliday D., Campbell R. G. Effect of beta-hydroxybutyrate on whole-body leucine kinetics and fractional mixed skeletal muscle protein synthesis in humans. J Clin Invest. 1988 Jul;82(1):198–205. doi: 10.1172/JCI113570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Nakagawa S., Nakayama H., Sasaki T., Yoshino K., Yu Y. Y. A simple method for the determination of serum free insulin levels in insulin-treated patients. Diabetes. 1973 Aug;22(8):590–600. doi: 10.2337/diab.22.8.590. [DOI] [PubMed] [Google Scholar]
  46. Neely A. N., Cox J. R., Fortney J. A., Schworer C. M., Mortimore G. E. Alterations of lysosomal size and density during rat liver perfusion. Suppression by insulin and amino acids. J Biol Chem. 1977 Oct 10;252(19):6948–6954. [PubMed] [Google Scholar]
  47. Nissen S., Haymond M. W. Changes in leucine kinetics during meal absorption: effects of dietary leucine availability. Am J Physiol. 1986 Jun;250(6 Pt 1):E695–E701. doi: 10.1152/ajpendo.1986.250.6.E695. [DOI] [PubMed] [Google Scholar]
  48. Pacy P. J., Nair K. S., Ford C., Halliday D. Failure of insulin infusion to stimulate fractional muscle protein synthesis in type I diabetic patients. Anabolic effect of insulin and decreased proteolysis. Diabetes. 1989 May;38(5):618–624. doi: 10.2337/diab.38.5.618. [DOI] [PubMed] [Google Scholar]
  49. Pain V. M., Garlick P. J. Effect of streptozotocin diabetes and insulin treatment on the rate of protein synthesis in tissues of the rat in vivo. J Biol Chem. 1974 Jul 25;249(14):4510–4514. [PubMed] [Google Scholar]
  50. Peavy D. E., Taylor J. M., Jefferson L. S. Correlation of albumin production rates and albumin mRNA levels in livers of normal, diabetic, and insulin-treated diabetic rats. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5879–5883. doi: 10.1073/pnas.75.12.5879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Peavy D. E., Taylor J. M., Jefferson L. S. Time course of changes in albumin synthesis and mRNA in diabetic and insulin-treated diabetic rats. Am J Physiol. 1985 Jun;248(6 Pt 1):E656–E663. doi: 10.1152/ajpendo.1985.248.6.E656. [DOI] [PubMed] [Google Scholar]
  52. Peters T., Jr, Fleischer B., Fleischer S. The biosynthesis of rat serum albumin. IV. Apparent passage of albumin through the Golgi apparatus during secretion. J Biol Chem. 1971 Jan 10;246(1):240–244. [PubMed] [Google Scholar]
  53. Robert J. J., Beaufrere B., Koziet J., Desjeux J. F., Bier D. M., Young V. R., Lestradet H. Whole body de novo amino acid synthesis in type I (insulin-dependent) diabetes studied with stable isotope-labeled leucine, alanine, and glycine. Diabetes. 1985 Jan;34(1):67–73. doi: 10.2337/diab.34.1.67. [DOI] [PubMed] [Google Scholar]
  54. Roberts C. M., Sokatch J. R. Branched chain amino acids as activators of branched chain ketoacid dehydrogenase. Biochem Biophys Res Commun. 1978 Jun 14;82(3):828–833. doi: 10.1016/0006-291x(78)90857-4. [DOI] [PubMed] [Google Scholar]
  55. Schomerus H., Mayer G. Synthesis rates of albumin and fibrinogen in patients with protein-losing enteropathy and in a patient recovering from protein malnutrition. Digestion. 1975;13(4):201–208. doi: 10.1159/000197709. [DOI] [PubMed] [Google Scholar]
  56. Schwenk W. F., Beaufrere B., Haymond M. W. Use of reciprocal pool specific activities to model leucine metabolism in humans. Am J Physiol. 1985 Dec;249(6 Pt 1):E646–E650. doi: 10.1152/ajpendo.1985.249.6.E646. [DOI] [PubMed] [Google Scholar]
  57. Schwenk W. F., Haymond M. W. Effects of leucine, isoleucine, or threonine infusion on leucine metabolism in humans. Am J Physiol. 1987 Oct;253(4 Pt 1):E428–E434. doi: 10.1152/ajpendo.1987.253.4.E428. [DOI] [PubMed] [Google Scholar]
  58. Simmons P. S., Miles J. M., Gerich J. E., Haymond M. W. Increased proteolysis. An effect of increases in plasma cortisol within the physiologic range. J Clin Invest. 1984 Feb;73(2):412–420. doi: 10.1172/JCI111227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Stacey-Schmidt C., Berg P., Haymond M. W. Use of D-glucosaminic acid as an internal standard in single-column accelerated amino acid analysis of physiological fluids. Anal Biochem. 1982 Jun;123(1):74–77. doi: 10.1016/0003-2697(82)90624-8. [DOI] [PubMed] [Google Scholar]
  60. Stirewalt W. S., Low R. B. Effects of insulin in vitro on protein turnover in rat epitrochlearis muscle. Biochem J. 1983 Feb 15;210(2):323–330. doi: 10.1042/bj2100323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Takeda Y. Studies of the metabolism and distribution of fibrinogen in healthy men with autologous 125-I-labeled fibrinogen. J Clin Invest. 1966 Jan;45(1):103–111. doi: 10.1172/JCI105314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Tessari P., Inchiostro S., Biolo G., Trevisan R., Fantin G., Marescotti M. C., Iori E., Tiengo A., Crepaldi G. Differential effects of hyperinsulinemia and hyperaminoacidemia on leucine-carbon metabolism in vivo. Evidence for distinct mechanisms in regulation of net amino acid deposition. J Clin Invest. 1987 Apr;79(4):1062–1069. doi: 10.1172/JCI112919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Tessari P., Nissen S. L., Miles J. M., Haymond M. W. Inverse relationship of leucine flux and oxidation to free fatty acid availability in vivo. J Clin Invest. 1986 Feb;77(2):575–581. doi: 10.1172/JCI112339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Tessari P., Trevisan R., Inchiostro S., Biolo G., Nosadini R., De Kreutzenberg S. V., Duner E., Tiengo A., Crepaldi G. Dose-response curves of effects of insulin on leucine kinetics in humans. Am J Physiol. 1986 Sep;251(3 Pt 1):E334–E342. doi: 10.1152/ajpendo.1986.251.3.E334. [DOI] [PubMed] [Google Scholar]
  65. Umpleby A. M., Boroujerdi M. A., Brown P. M., Carson E. R., Sönksen P. H. The effect of metabolic control on leucine metabolism in type 1 (insulin-dependent) diabetic patients. Diabetologia. 1986 Mar;29(3):131–141. doi: 10.1007/BF02427082. [DOI] [PubMed] [Google Scholar]
  66. Wahren J., Efendić S., Luft R., Hagenfeldt L., Björkman O., Felig P. Influence of somatostatin on splanchnic glucose metabolism in postabsorptive and 60-hour fasted humans. J Clin Invest. 1977 Feb;59(2):299–307. doi: 10.1172/JCI108641. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES