Full text
PDF

Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADAMS R. D., VICTOR M., MANCALL E. L. Central pontine myelinolysis: a hitherto undescribed disease occurring in alcoholic and malnourished patients. AMA Arch Neurol Psychiatry. 1959 Feb;81(2):154–172. [PubMed] [Google Scholar]
- Anderson R. J., Chung H. M., Kluge R., Schrier R. W. Hyponatremia: a prospective analysis of its epidemiology and the pathogenetic role of vasopressin. Ann Intern Med. 1985 Feb;102(2):164–168. doi: 10.7326/0003-4819-102-2-164. [DOI] [PubMed] [Google Scholar]
- Ayus J. C., Wheeler J. M., Arieff A. I. Postoperative hyponatremic encephalopathy in menstruant women. Ann Intern Med. 1992 Dec 1;117(11):891–897. doi: 10.7326/0003-4819-117-11-891. [DOI] [PubMed] [Google Scholar]
- Barnett N. M., Naylor A. W. Amino Acid and protein metabolism in bermuda grass during water stress. Plant Physiol. 1966 Sep;41(7):1222–1230. doi: 10.1104/pp.41.7.1222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baxter C. F., Ortiz C. L. Amino acids and the maintenance of osmotic equilibrium in brain tissue. Life Sci. 1966 Dec;5(24):2321–2329. doi: 10.1016/0024-3205(66)90069-5. [DOI] [PubMed] [Google Scholar]
- Berl T. Treating hyponatremia: damned if we do and damned if we don't. Kidney Int. 1990 Mar;37(3):1006–1018. doi: 10.1038/ki.1990.78. [DOI] [PubMed] [Google Scholar]
- Borowitzka L. J., Brown A. D. The salt relations of marine and halophilic species of the unicellular green alga, Dunaliella. The role of glycerol as a compatible solute. Arch Mikrobiol. 1974 Mar 1;96(1):37–52. doi: 10.1007/BF00590161. [DOI] [PubMed] [Google Scholar]
- Brown A. D., Simpson J. R. Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J Gen Microbiol. 1972 Oct;72(3):589–591. doi: 10.1099/00221287-72-3-589. [DOI] [PubMed] [Google Scholar]
- Clifford D. B., Gado M. H., Levy B. K. Osmotic demyelination syndrome. Lack of pathologic and radiologic imaging correlation. Arch Neurol. 1989 Mar;46(3):343–347. doi: 10.1001/archneur.1989.00520390109028. [DOI] [PubMed] [Google Scholar]
- Fraser C. L., Kucharczyk J., Arieff A. I., Rollin C., Sarnacki P., Norman D. Sex differences result in increased morbidity from hyponatremia in female rats. Am J Physiol. 1989 Apr;256(4 Pt 2):R880–R885. doi: 10.1152/ajpregu.1989.256.4.R880. [DOI] [PubMed] [Google Scholar]
- Garcia-Perez A., Burg M. B. Role of organic osmolytes in adaptation of renal cells to high osmolality. J Membr Biol. 1991 Jan;119(1):1–13. doi: 10.1007/BF01868535. [DOI] [PubMed] [Google Scholar]
- Holliday M. A., Kalayci M. N., Harrah J. Factors that limit brain volume changes in response to acute and sustained hyper- and hyponatremia. J Clin Invest. 1968 Aug;47(8):1916–1928. doi: 10.1172/JCI105882. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karp B. I., Laureno R. Pontine and extrapontine myelinolysis: a neurologic disorder following rapid correction of hyponatremia. Medicine (Baltimore) 1993 Nov;72(6):359–373. [PubMed] [Google Scholar]
- Kreis R., Farrow N., Ross B. D. Diagnosis of hepatic encephalopathy by proton magnetic resonance spectroscopy. Lancet. 1990 Sep 8;336(8715):635–636. doi: 10.1016/0140-6736(90)93439-v. [DOI] [PubMed] [Google Scholar]
- Lien Y. H., Shapiro J. I., Chan L. Study of brain electrolytes and organic osmolytes during correction of chronic hyponatremia. Implications for the pathogenesis of central pontine myelinolysis. J Clin Invest. 1991 Jul;88(1):303–309. doi: 10.1172/JCI115292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Measures J. C. Role of amino acids in osmoregulation of non-halophilic bacteria. Nature. 1975 Oct 2;257(5525):398–400. doi: 10.1038/257398a0. [DOI] [PubMed] [Google Scholar]
- Melton J. E., Patlak C. S., Pettigrew K. D., Cserr H. F. Volume regulatory loss of Na, Cl, and K from rat brain during acute hyponatremia. Am J Physiol. 1987 Apr;252(4 Pt 2):F661–F669. doi: 10.1152/ajprenal.1987.252.4.F661. [DOI] [PubMed] [Google Scholar]
- Michaelis T., Merboldt K. D., Hänicke W., Gyngell M. L., Bruhn H., Frahm J. On the identification of cerebral metabolites in localized 1H NMR spectra of human brain in vivo. NMR Biomed. 1991 Apr;4(2):90–98. doi: 10.1002/nbm.1940040211. [DOI] [PubMed] [Google Scholar]
- Shank R. P., Baxter C. F. Metabolism of glucose, amino acids, and some related metabolites in the brain of toads (Bufo boreas) adapted to fresh water or hyperosmotic environments. J Neurochem. 1973 Aug;21(2):301–313. doi: 10.1111/j.1471-4159.1973.tb04251.x. [DOI] [PubMed] [Google Scholar]
- Sterns R. H., Cappuccio J. D., Silver S. M., Cohen E. P. Neurologic sequelae after treatment of severe hyponatremia: a multicenter perspective. J Am Soc Nephrol. 1994 Feb;4(8):1522–1530. doi: 10.1681/ASN.V481522. [DOI] [PubMed] [Google Scholar]
- Sterns R. H., Thomas D. J., Herndon R. M. Brain dehydration and neurologic deterioration after rapid correction of hyponatremia. Kidney Int. 1989 Jan;35(1):69–75. doi: 10.1038/ki.1989.9. [DOI] [PubMed] [Google Scholar]
- Strange K. Regulation of solute and water balance and cell volume in the central nervous system. J Am Soc Nephrol. 1992 Jul;3(1):12–27. doi: 10.1681/ASN.V3112. [DOI] [PubMed] [Google Scholar]
- Thurston J. H., Hauhart R. E. Brain amino acids decrease in chronic hyponatremia and rapid correction causes brain dehydration: possible clinical significance. Life Sci. 1987 Jun 29;40(26):2539–2542. doi: 10.1016/0024-3205(87)90076-2. [DOI] [PubMed] [Google Scholar]
- Thurston J. H., Sherman W. R., Hauhart R. E., Kloepper R. F. myo-inositol: a newly identified nonnitrogenous osmoregulatory molecule in mammalian brain. Pediatr Res. 1989 Nov;26(5):482–485. doi: 10.1203/00006450-198911000-00024. [DOI] [PubMed] [Google Scholar]
- Verbalis J. G., Drutarosky M. D. Adaptation to chronic hypoosmolality in rats. Kidney Int. 1988 Sep;34(3):351–360. doi: 10.1038/ki.1988.188. [DOI] [PubMed] [Google Scholar]
- Verbalis J. G., Gullans S. R. Hyponatremia causes large sustained reductions in brain content of multiple organic osmolytes in rats. Brain Res. 1991 Dec 20;567(2):274–282. doi: 10.1016/0006-8993(91)90806-7. [DOI] [PubMed] [Google Scholar]
- Verbalis J. G., Gullans S. R. Rapid correction of hyponatremia produces differential effects on brain osmolyte and electrolyte reaccumulation in rats. Brain Res. 1993 Mar 19;606(1):19–27. doi: 10.1016/0006-8993(93)91564-9. [DOI] [PubMed] [Google Scholar]
- Videen J. S., Michaelis T., Pinto P., Ross B. D. Human cerebral osmolytes during chronic hyponatremia. A proton magnetic resonance spectroscopy study. J Clin Invest. 1995 Feb;95(2):788–793. doi: 10.1172/JCI117728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]
